paradisemc.ru

Анализ на хромосомные патологии плода и его эффективность. Хромосомные патологии при беременности

Общие вопросы

Хромосомные болезни - это большая группа врожденных наследственных болезней с множественными врожденными пороками развития. В их основе лежат хромосомные или геномные мутации. Эти два разных типа мутаций для краткости объединяют термином «хромосомные аномалии».

Нозологическое выделение по меньшей мере трех хромосомных болезней как клинических синдромов врожденных нарушений развития сделано до установления их хромосомной природы.

Наиболее часто встречающаяся болезнь, трисомия 21, клинически была описана в 1866 г. английским педиатром Л. Дауном и получила название «синдром Дауна». В дальнейшем причина синдрома не раз подвергалась генетическому анализу. Высказывались предположения о доминантной мутации, о врожденной инфекции, о хромосомной природе.

Первое клиническое описание синдрома моносомии по Х-хромосоме как отдельной формы болезни было сделано русским клиницистом Н.А. Шерешевским в 1925 г., а в 1938 г. Г. Тернер также описал этот синдром. По фамилии этих ученых моносомию по Х-хромосоме называют синдромом Шерешевского-Тернера. В зарубежной литературе в основном используют название «синдром Тернера», хотя никто не оспаривает заслугу Н.А. Шерешевского.

Аномалии в системе половых хромосом у мужчин (трисомия XXY) как клинический синдром впервые описал Г. Клайнфелтер в 1942 г.

Перечисленные заболевания стали объектом первых клиникоцитогенетических исследований, проведенных в 1959 г. Расшифровка этиологии синдромов Дауна, Шерешевского-Тернера и Клайнфелтера открыла новую главу в медицине - хромосомные болезни.

В 60-х годах XX века благодаря широкому развертыванию цитогенетических исследований в клинике полностью сложилась клиническая цитогенетика. Была показана роль хромосомных и геномных мутаций в патологии человека, расшифрована хромосомная этиология многих синдромов врожденных пороков разви-

тия, определена частота хромосомных болезней среди новорожденных и при спонтанных абортах.

Наряду с изучением хромосомных болезней как врожденных состояний начались интенсивные цитогенетические исследования в онкологии, особенно при лейкозах. Роль хромосомных изменений в опухолевом росте оказалась очень значимой.

По мере совершенствования цитогенетических методов, особенно таких, как дифференциальная окраска и молекулярная цитогенетика, открывались новые возможности для обнаружения ранее не описанных хромосомных синдромов и установления связи между кариотипом и фенотипом при небольших изменениях хромосом.

В результате интенсивного изучения хромосом человека и хромосомных болезней на протяжении 35-40 лет сложилось учение о хромосомной патологии, которая имеет большое значение в современной медицине. Данное направление в медицине включает не только хромосомные болезни, но и патологию внутриутробного периода (спонтанные аборты, выкидыши), а также соматическую патологию (лейкозы, лучевая болезнь). Число описанных типов хромосомных аномалий приближается к 1000, из них более 100 форм имеют клинически очерченную картину и называются синдромами. Диагностика хромосомных аномалий необходима в практике врачей разных специальностей (генетик, акушер-гинеколог, педиатр, невропатолог, эндокринолог и др.). Во всех многопрофильных современных больницах (более 1000 коек) в развитых странах имеются цитогенетические лаборатории.

Этиология и классификация

Этиологическими факторами хромосомной патологии являются все виды хромосомных мутаций и некоторые геномные мутации. Хотя геномные мутации в животном и растительном мире многообразны, у человека обнаружены только 3 типа геномных мутаций: тетраплоидия, триплоидия и анеуплоидия. Из всех вариантов анеуплоидий встречаются только трисомии по аутосомам, полисомии по половым хромосомам (три-, тетра- и пентасомии), а из моносомий встречается только моносомия Х.

Что касается хромосомных мутаций, то у человека обнаружены все их типы (делеции, дупликации, инверсии, транслокации). С

клинико-цитогенетической точки зрения делеция в одной из гомологичных хромосом означает нехватку участка или частичную моносомию по этому участку, а дупликация - избыток или частичную трисомию. Современные методы молекулярной цитогенетики позволяют выявлять мелкие делеции на уровне гена. Таким образом, стирается грань между генной и хромосомной патологией.

Если транслокация реципрокная (взаимная) без потери участков вовлеченных в нее хромосом, то она называется сбалансированной.

Как и инверсия, она не дает патологических эффектов у носителя. Однако в результате сложных механизмов кроссинговера и редукции числа хромосом при образовании гамет у носителей сбалансированных транслокаций и инверсий могут образовываться несбалансированные гаметы, т.е. гаметы с частичной дисомией или с частичной нуллисомией либо с той и другой аномалией из разных участков (в норме каждая гамета моносомна).

Транслокация между двумя акроцентрическими хромосомами с потерей их коротких плеч приводит к образованию одной метаили субметацентрической хромосомы вместо двух акроцентрических. Такие транслокации называются робертсоновскими. Формально их носители имеют моносомию по коротким плечам двух акроцентрических хромосом. Однако такие носители здоровы, потому что потеря коротких плеч двух акроцентрических хромосом компенсируется работой таких же генов в остальных 8 акроцентрических хромосомах. У носителей робертсоновских транслокаций может образовываться 6 типов гамет (рис. 5.1), но нуллисомные гаметы должны приводить к моносомии по аутосомам в зиготе, а такие зиготы не развиваются.

Клиническая картина простых и транслокационных форм трисомии по акроцентрическим хромосомам одинаковая.

Рис. 5.1. Типы гамет у носителей робертсоновской транслокации 21/14.

1 - моносомия 14 и 21 (норма); 2 - моносомия 14 и 21 с робертсоновской транслокацией; 3 - дисомия 14 и моносомия 21; 4 - дисомия 21, моносомия 14; 5 - нуллисомия 21; 6 - нуллисомия 14.

Рис. 5.2. Изохромосомы Х по длинному и короткому плечу.

В случае концевых делеций в обоих плечах хромосомы возникает кольцевая хромосома. У индивида, унаследовавшего кольцевую хромосому от одного из родителей, будет частичная моносомия по двум концевым участкам хромосомы.

Иногда разрыв хромосомы проходит через центромеру. Каждое плечо, разъединенное после репликации, имеет две сестринские хроматиды, соединенные оставшейся частью центромеры. Сестринские хроматиды одного и того же плеча становятся плечами одной хромосомы (рис. 5.2). Со следующего митоза эта хромосома начинает реплицироваться и передаваться из клетки в клетку как само-

стоятельная единица наряду с остальным набором хромосом. Такие хромосомы называют изохромосомами. У них одинаковые по набору генов плечи. Каков бы ни был механизм образования изохромосом (он еще полностью не выяснен), их наличие вызывает хромосомную патологию, потому что это одновременно и частичная моносомия (по отсутствующему плечу), и частичная трисомия (по присутствующему плечу).

Недавно у человека обнаружено явление однородительских дисомий. У таких индивидов число хромосом по всем парам нормальное, но одна пара представлена хромосомами от одного родителя. В основе этого явления могут лежать несколько механизмов: нуллисомная по определенной хромосоме набора гамета сливается с дисомной по этой же хромосоме другой гаметой; у первоначально трисомного по какой-либо хромосоме зародыша (или даже в зиготе) теряется единственная хромосома, происходящая от одного из родителей, а две хромосомы от другого родителя сохраняются (редукция трисомии); у моносомной по какой-либо хромосоме зиготы при митозах в процессе дробления данная хромосома дублируется и воспроизводится в последующих делениях в двойном от одного родителя наборе (постзиготическая дупликация моносомии).

В основе классификации хромосомной патологии лежат 3 принципа, позволяющие точно охарактеризовать форму хромосомной патологии и ее варианты у обследуемого.

Первый принцип - характеристика хромосомной или геномной мутации (триплоидия, простая трисомия по хромосоме 21, частичная моносомия и т.д.) с учетом конкретной хромосомы. Этот принцип можно назвать этиологическим.

Клиническая картина хромосомной патологии определяется типом геномной или хромосомной мутации, с одной стороны, и индивидуальной хромосомой - с другой. Нозологическое подразделение хромосомной патологии основывается, таким образом, на этиологическом и патогенетическом принципе: для каждой формы хромосомной патологии устанавливается, какая структура вовлечена в патологический процесс (хромосома, сегмент) и в чем состоит генетическое нарушение (недостаток или избыток хромосомного материала). Дифференциация хромосомной патологии на основании клинической картины не имеет существенного значения, поскольку разным хромосомным аномалиям свойственна большая общность нарушений развития.

Второй принцип - определение типа клеток, в которых возникла мутация (в гаметах или зиготе). Гаметические мутации ведут к полным формам хромосомных болезней. У таких индивидов все клетки несут унаследованную с гаметой хромосомную аномалию.

Если хромосомная аномалия возникает в зиготе или на ранних стадиях дробления (такие мутации называют соматическими, в отличие от гаметических), то развивается организм с клетками разной хромосомной конституции (два типа и более). Такие формы хромосомных болезней называют мозаичными.

Для возникновения мозаичных форм, по клинической картине совпадающих с полными формами, нужно не менее 10% клеток с аномальным набором.

Третий принцип - это выявление поколения, в котором возникла мутация: возникла она заново в гаметах здоровых родителей (спорадические случаи) или родители уже имели такую аномалию (наследуемые, или семейные, формы).

О наследуемых хромосомных болезнях говорят тогда, когда мутация имеется в клетках родителя, в том числе и в гонадах. Это могут быть и случаи трисомии. Например, у индивидов с синдромами Дауна и трипло-Х образуются нормальные и дисомные гаметы. Такое происхождение дисомных гамет - следствие вторичного нерасхождения, т.е. нерасхождения хромосом у индивида с трисомией. Большая часть наследуемых случаев хромосомных болезней связана с робертсоновскими транслокациями, сбалансированными реципрокными транслокациями между двумя (реже более)

хромосомами и инверсиями у здоровых родителей. Клинически значимые хромосомные аномалии в этих случаях возникли в связи со сложными перестройками хромосом в процессе мейоза (конъюгация, кроссинговер).

Таким образом, для точной диагностики хромосомной болезни необходимо определить: 1) тип мутации; 2) вовлеченную в процесс хромосому; 3) форму (полная или мозаичная); 4) встречаемость в родословной - спорадический или наследуемый случай. Такая диагностика возможна только при цитогенетическом обследовании пациента, а иногда и его родителей и сибсов.

Эффекты хромосомных аномалий в онтогенезе

Хромосомные аномалии вызывают нарушение общего генетического баланса, той скоординированности в работе генов и системности регуляции, которые сложились в процессе эволюции каждого вида. Неудивительно, что патологические эффекты хромосомных и геномных мутаций проявляются на всех стадиях онтогенеза и, возможно, даже на уровне гамет, влияя на их формирование (особенно у мужчин).

Изучение первичных эффектов хромосомных аномалий началось в начале 60-х годов вскоре после открытия хромосомных болезней и продолжается до сих пор. Главные эффекты хромосомных аномалий проявляются в двух связанных между собой вариантах: летальности и врожденных пороках развития.

Летальность. Имеются убедительные свидетельства того, что патологические эффекты хромосомных аномалий начинают проявляться уже со стадии зиготы. Летальность - один из главных факторов внутриутробной гибели, достаточно высокой у человека.

Выявить количественный вклад хромосомных аномалий в гибель зигот и бластоцист (первые 2 нед после оплодотворения) в полной мере трудно, поскольку в этот период беременность ни клинически, ни лабораторно еще не диагностируется. Однако некоторые прямые исследования бластоцист и результаты экстраполяций позволяют предположить, что 30-40% оплодотворенных яйцеклеток погибает на стадии зиготы - бластоцисты, т.е. до имплантации и, следовательно, до лабораторного или клинического установления беременности. В этих случаях происходит резкое нарушение ранних морфогенетических процессов (до гаструляции и

формирования зародышевых листков). Такие случаи ранней остановки развития можно объяснить тем, что нарушение геномного баланса вследствие развития какой-то определенной формы хромосомной аномалии приводит к дискоординации включения и выключения генов на соответствующей стадии развития (временной фактор) или в соответствующем месте бластоцисты (пространственный фактор). Это вполне понятно: поскольку в процессах развития на ранних стадиях участвуют примерно 1000 генов, локализованных во всех хромосомах, хромосомная аномалия нарушает взаимодействие генов и инактивирует какие-то конкретные процессы развития (межклеточные взаимодействия, дифференцировка клеток и др.).

Многочисленные цитогенетические исследования материала спонтанных абортов, выкидышей и мертворожденных позволяют объективно судить об эффектах разных типов хромосомных аномалий во внутриутробном периоде индивидуального развития. Летальный или дизморфогенетический эффект хромосомных аномалий обнаруживается на всех стадиях внутриутробного онтогенеза (имплантация, эмбриогенез, органогенез, рост и развитие плода). Суммарный вклад хромосомных аномалий во внутриутробную гибель (после имплантации) у человека составляет 45%. При этом чем раньше прерывается беременность, тем вероятнее, что это обусловлено аномалиями развития эмбриона, вызванными хромосомным дисбалансом. У 2-4-недельных абортусов (эмбрион и его оболочки) хромосомные аномалии обнаруживают в 60-70% случаев. В I триместре гестации хромосомные аномалии встречаются у 50% абортусов. У плодов-вькидышей II триместра такие аномалии находят в 25-30% случаев, а у плодов, погибших после 20 нед гестации,- в 7% случаев.

Среди перинатально погибших плодов частота хромосомных аномалий составляет 6%.

Наиболее тяжелые формы по дисбалансу хромосомного набора встречаются у ранних абортусов. Это полиплоидии (25%), полные трисомии по аутосомам (50%). Трисомии по некоторым аутосомам (1; 5; 6; 11; 19) встречаются крайне редко даже у элиминированных эмбрионов и плодов, что свидетельствует о большой морфогенетической значимости этих аутосом. Данные аномалии прерывают развитие в доимплантационном периоде или нарушают гаметогенез.

Высокая морфогенетическая значимость аутосом еще более отчетлива при полных аутосомных моносомиях. Последние редко

обнаруживаются даже в материале ранних спонтанных абортов из-за летального эффекта такого дисбаланса.

Врожденные пороки развития. Если хромосомная аномалия не дает летального эффекта на ранних стадиях развития, то ее последствия проявляются в виде врожденных пороков развития. Практически все хромосомные аномалии (кроме сбалансированных) приводят к врожденным порокам развития, сочетания которых известны как нозологические формы хромосомных болезней и синдромов.

Эффекты однородительских дисомий. Явление однородительских дисомий небезразлично для индивида. Во-первых, может присходить гомозиготизация по рецессивным патологическим генам, т.е. болезнь будет получена от одного родителя. Во-вторых, по некоторым хромосомам однородительские дисомии приводят к синдромам или внутриутробной задержке роста плода в связи с импринтингом локуса в отцовской или материнской хромосоме (моноаллельная, а не биаллельная экспрессия). Примеры влияния однородительских дисомий на развитие индивида приведены в табл. 5.1.

Таблица 5.1. Примеры однородительских дисомий человека, приводящих к аномалиям фенотипа

Эффекты хромосомных аномалий в соматических клетках. Роль хромосомных и геномных мутаций не ограничивается их влиянием на развитие патологических процессов в ранних периодах онтогенеза (незачатие, спонтанный аборт, мертворождение, хромосомная болезнь). Их эффекты прослеживаются в течение всей жизни.

Хромосомные аномалии, возникающие в соматических клетках в постнатальном периоде, могут вызывать различные последствия: остаться нейтральными для клетки, обусловить гибель клетки, активировать деление клетки, изменить функцию. Хромосомные аномалии возникают в соматических клетках постоянно с невысокой частотой (около 2%). В норме такие клетки элиминируются иммунной системой, если они проявляют себя чужеродно. Однако в некоторых случаях (активация онкогенов при транслокациях, делециях) хромосомные аномалии становятся причиной злокачественного роста. Например, транслокация между хромосомами 9 и 22 вызывает миелолейкоз. Облучение и химические мутагены индуцируют хромосомные аберрации. Такие клетки гибнут, что наряду с действием других факторов способствует развитию лучевой болезни, аплазии костного мозга. Имеются экспериментальные доказательства накопления клеток с хромосомными аберрациями в процессе старения.

Патогенез

Несмотря на хорошую изученность клиники и цитогенетики хромосомных болезней, их патогенез даже в общих чертах еще неясен. Не разработана общая схема развития сложных патологических процессов, обусловленных хромосомными аномалиями и приводящих к появлению сложнейших фенотипов хромосомных болезней. Ключевое звено в развитии хромосомной болезни ни при одной форме не выявлено. Некоторые авторы предполагают, что это звено - несбалансированность генотипа или нарушение общего генного баланса. Однако такое определение ничего конструктивного не дает. Несбалансированность генотипа - условие, а не звено патогенеза, она должна реализовываться через какие-то специфические биохимические или клеточные механизмы в фенотип (клиническую картину) болезни.

Систематизация данных о механизмах нарушений при хромосомных болезнях показывает, что при любых трисомиях и частич-

ных моносомиях можно выделить 3 типа генетических эффектов: специфические, полуспецифические и неспецифические.

Специфические эффекты должны быть связаны с изменением числа структурных генов, кодирующих синтез белка (при трисомии их число увеличивается, при моносомии уменьшается). Многочисленные попытки найти специфические биохимические эффекты подтвердили это положение лишь для немногих генов или их продуктов. При трисомии 21 обнаружено 50% повышение активности супероксиддисмутазы (ген локализован в 21-й хромосоме). Подобный «эффект дозы гена» выявлен для нескольких десятков генов при трисомиях по разным хромосомам.

Однако биохимическое изучение фенотипа хромосомных болезней пока не привело к пониманию путей патогенеза, возникающих вследствие хромосомных аномалий врожденных нарушений морфогенеза в широком смысле слова. Обнаруженные биохимические отклонения пока трудно связать с фенотипическими характеристиками болезней на органном и системном уровнях. Изменение числа аллелей гена не всегда вызывает пропорциональное изменение продукции соответствующего белка. При хромосомной болезни всегда существенно меняется активность других ферментов или количество белков, гены которых локализованы на не вовлеченной в дисбаланс хромосоме. Ни в одном случае не обнаружено белка-маркера при хромосомных болезнях.

Полуспецифические эффекты при хромосомных болезнях могут быть обусловлены изменением числа генов, и в норме представленных в виде многочисленных копий. К таким генам относятся гены рибосомных и транспортных РНК, гистоновых и рибосомных белков, сократительных белков актина и тубулина. Эти белки в норме контролируют ключевые этапы метаболизма клетки, процессов ее деления, межклеточных взаимодействий. Каковы фенотипические эффекты дисбаланса этой группы генов, как компенсируется их недостаток или избыток, пока неизвестно.

Неспецифические эффекты хромосомных аномалий связывают с измененным содержанием гетерохроматина в клетке. Важная роль гетерохроматина в клеточных делениях, клеточном росте и других биологических функциях не вызывает сомнений. Таким образом, неспецифические и частично полуспецифические эффекты приближают нас к клеточным механизмам патогенеза,

безусловно, играющим важнейшую роль при врожденных пороках развития.

Большой фактический материал позволяет провести сопоставление клинического фенотипа болезни с цитогенетическими изменениями (фенокариотипические корреляции).

Общее для всех форм хромосомных болезней - множественность поражения. Это черепно-лицевые дизморфии, врожденные пороки развития внутренних и наружных органов, замедленные внутриутробные и постнатальные рост и развитие, отставание психического развития, нарушения функций нервной, эндокринной и иммунной систем. При каждой форме хромосомных болезней наблюдается 30-80 различных отклонений, перекрывающих формы. Лишь небольшое число хромосомных болезней проявляется только определенным сочетанием отклонений в развитии, но не специфическими пороками, что и используют в клинической и патологоанатомической диагностике.

Патогенез хромосомных болезней развертывается в раннем внутриутробном и продолжается в постнатальном периоде. Множественные врожденные пороки развития как главное фенотипическое проявление хромосомных болезней формируются в раннем эмбриогенезе, поэтому к периоду постнатального онтогенеза все основные пороки развития уже налицо (кроме пороков развития половых органов). Раннее и множественное поражение систем организма объясняет некоторую общность клинической картины разных хромосомных болезней.

Фенотипическое проявление хромосомных аномалий, т.е. формирование клинической картины, зависит от следующих главных факторов: 1) индивидуальности вовлеченной в аномалию хромосомы или ее участка (специфический набор генов); 2) типа аномалии (трисомия, моносомия; полная, частичная); 3) размера недостающего (при делеции) или избыточного (при частичной трисомии) материала; 4) степени мозаичности организма по аберрантным клеткам; 5) генотипа организма; 6) условий среды (внутриутробная или постнатальная).

Степень отклонений в развитии организма зависит от качественной и количественной характеристики унаследованной хромосомной аномалии. При исследовании клинических данных у человека полностью подтверждается доказанная у других видов относительно невысокая биологическая ценность гетерохроматиновых районов хромосом. Полные трисомии у живорожденных наблюдаются только по аутосомам, богатым

гетерохроматином (8; 9; 13; 18; 21). Так же объясняется полисомия (до пентасомии) по половым хромосомам, в которой Y-хромосома имеет мало генов, а добавочные Х-хромосомы бывают гетерохроматинизированы.

Клиническое сопоставление полных и мозаичных форм болезни показывает, что мозаичные формы протекают в среднем легче. По-видимому, это объясняется присутствием нормальных клеток, частично компенсирующих генетический дисбаланс. В индивидуальном прогнозе прямой связи тяжести течения заболевания и соотношения аномальных и нормальных клонов не обнаруживается.

По мере изучения фено- и кариотипических корреляций при разных протяженностях хромосомной мутации выясняется, что наиболее специфичные для того или иного синдрома проявления обусловлены отклонениями в содержании сравнительно небольших сегментов хромосом. Дисбаланс по значительному объему хромосомного материала делает клиническую картину более неспецифичной. Так, специфические клинические симптомы синдрома Дауна проявляются при трисомии по сегменту длинного плеча хромосомы 21q22.1. Для развития синдрома «кошачьего крика» при делециях короткого плеча аутосомы 5 наиболее важна средняя часть сегмента (5р15). Характерные черты синдрома Эдвардса связаны с трисомией сегмента хромосомы 18q11.

Каждой хромосомной болезни свойствен клинический полиморфизм, в общей форме обусловленный генотипом организма и условиями среды. Вариации в проявлениях патологии могут быть очень широкими: от летального эффекта до незначительных отклонений в развитии. Так, 60-70% случаев трисомии 21 заканчиваются гибелью во внутриутробном периоде, в 30% случаев рождаются дети с синдромом Дауна, имеющим очень различные клинические проявления. Моносомия по Х-хромосоме среди новорожденных (синдром Шерешевского-Тернера) - это 10% всех моносомных по Х-хромосоме зародышей (остальные погибают), а если учитывать еще доимплантационную гибель зигот Х0, то живорожденные с синдромом Шерешевского-Тернера составляют только 1%.

Несмотря на недостаточное понимание закономерностей патогенеза хромосомных болезней в целом, некоторые звенья общей цепи событий в развитии отдельных форм уже известны и их количество постоянно увеличивается.

Клинико-цитогенетические характеристики наиболее распространенных хромосомных болезней

Синдром Дауна

Синдром Дауна, трисомия 21, - наиболее изученная хромосомная болезнь. Частота синдрома Дауна среди новорожденных равна 1:700-1:800, не имеет какой-либо временной, этнической или географической разницы при одинаковом возрасте родителей. Частота рождения детей с синдромом Дауна зависит от возраста матери и в меньшей мере от возраста отца (рис. 5.3).

С возрастом существенно увеличивается вероятность рождения детей с синдромом Дауна. Так, у женщин в возрасте 45 лет она составляет около 3%. Высокая частота детей с синдромом Дауна (около 2%) наблюдается у рано рожающих женщин (до 18 лет). Следовательно, для популяционных сравнений частоты рождения детей с синдромом Дауна надо принимать во внимание распреде-

Рис. 5.3. Зависимость частоты рождения детей с синдромом Дауна от возраста матери.

ление рожающих женщин по возрасту (доля женщин, рожающих после 30-35 лет, в общем числе рожающих). Это распределение иногда меняется в течение 2-3 лет для одного и того же населения (например, при резком изменении экономической ситуации в стране). Рост частоты синдрома Дауна с увеличением материнского возраста известен, но большинство детей с синдромом Дауна все-таки рождены матерями моложе 30 лет. Это связано с большим числом беременностей в этой возрастной группе по сравнению с женщинами более старшего возраста.

В литературе описана «пучковость» рождения детей с синдромом Дауна в определенные промежутки времени в некоторых странах (городах, провинциях). Эти случаи можно объяснить скорее стохастическими колебаниями спонтанного уровня нерасхождения хромосом, чем воздействием предполагаемых этиологических факторов (вирусная инфекция, низкие дозы радиации, хлорофос).

Цитогенетические варианты синдрома Дауна разнообразны. Однако основную долю (94-95%) составляют случаи простой полной трисомии 21 вследствие нерасхождения хромосом в мейозе. Вклад материнского нерасхождения в эти гаметические формы болезни составляет 80-90%, а отцовского - только 10-20%. Причины такой разницы неясны. Около 2% детей с синдромом Дауна имеют мозаичные формы (47+21/46). Примерно 3-4% больных с синдромом Дауна имеют транслокационную форму трисомии по типу робертсоновских транслокаций между акроцентриками (D/21 и G/21). Почти 50% транслокационных форм наследуются от родителей-носителей, а 50% транслокаций возникают de novo.

Соотношение мальчиков и девочек с синдромом Дауна составляет 1:1.

Клиническая симптоматика синдрома Дауна разнообразна: это и врожденные пороки развития, и нарушения постнатального развития нервной системы, и вторичный иммунодефицит и т.п. Дети с синдромом Дауна рождаются в срок, но с умеренно выраженной пренатальной гипоплазией (на 8-10% ниже средних величин). Многие симптомы синдрома Дауна заметны уже при рождении и в последующем проявляются более четко. Квалифицированный педиатр устанавливает правильный диагноз синдрома Дауна в родильном доме не менее чем в 90% случаев. Из черепно-лицевых дизморфий отмечаются монголоидный разрез глаз (по этой причине синдром Дауна долго называли монголоидизмом), брахицефалия, круглое уплощенное лицо, плоская спинка носа, эпикант, крупный (обычно высунутый) язык,

деформированные ушные раковины (рис. 5.4). Мышечная гипотония сочетается с разболтанностью суставов (рис. 5.5). Часто встречаются врожденный порок сердца, клинодактилия, типичные изменения дерматоглифики [четырехпальцевая, или «обезьянья», складка на ладони (рис. 5.6), две кожные складки вместо трех на мизинце, высокое положение трирадиуса и др.]. Пороки ЖКТ наблюдаются редко.

Рис. 5.4. Дети разного возраста с характерными чертами синдрома Дауна (брахицефалия, круглое лицо, макроглоссия и открытый рот, эпикант, гипертелоризм, широкая переносица, «карпий рот», косоглазие).

Рис. 5.5. Резкая гипотония у пациента с синдромом Дауна.

Рис. 5.6. Ладони взрослого мужчины с синдромом Дауна (усиленная морщинистость, на левой руке четырехпальцевая, или «обезьянья», складка).

Какие-либо симптомы, кроме низкого роста, выявляются не у всех больных. В табл. 5.2 и 5.3 представлена частота внешних признаков и основных врожденных пороков внутренних органов при синдроме Дауна.

Таблица 5.2. Наиболее частые внешние признаки синдрома Дауна (по Г.И. Лазюку, с дополнениями)

Диагноз синдрома Дауна устанавливают на основании сочетания нескольких симптомов. Следующие 10 признаков наиболее важны для установления диагноза, наличие 4-5 из них достоверно указывает на синдром Дауна: 1) уплощение профиля лица (90%); 2) отсутствие сосательного рефлекса (85%); 3) мышечная гипотония (80%); 4) монголоидный разрез глазных щелей (80%); 5) избыток кожи на шее (80%); 6) разболтанность суставов (80%); 7) диспластичный таз (70%); 8) диспластичные (деформированные) ушные раковины (60%); 9) клинодактилия мизинца (60%); 10) четырехпальцевая сгибательная складка (поперечная линия) ладони (45%). Большое значение для диагностики имеет динамика физического и умственного разви-

Таблица 5.3. Основные врожденные пороки внутренних органов при синдроме Дауна (по Г.И. Лазюку, с дополнениями)

тия ребенка - при синдроме Дауна оно задерживается. Рост взрослых больных на 20 см ниже среднего. Задержка умственного развития может достигать уровня имбецильности без специальных методов обучения. Дети с синдромом Дауна ласковые, внимательные, послушные, терпеливые при обучении. Коэффициент умственного развития (англ. IQ) у разных детей может составлять от 25 до 75.

Реакция детей с синдромом Дауна на воздействия окружающей среды часто патологическая в связи со слабым клеточным и гуморальным иммунитетом, снижением репарации ДНК, недостаточной выработкой пищеварительных ферментов, ограниченными компенсаторными возможностями всех систем. По этой причине дети с синдромом Дауна часто болеют пневмониями, тяжело переносят детские инфекции. У них отмечается недостаток массы тела, выражен гиповитаминоз.

Врожденные пороки внутренних органов, сниженная приспособляемость детей с синдромом Дауна часто приводят к смерти в первые 5 лет. Следствием измененного иммунитета и недостаточности репарационных систем (для поврежденной ДНК) являются лейкозы, часто возникающие у больных с синдромом Дауна.

Дифференциальная диагностика проводится с врожденным гипотиреозом, другими формами хромосомных аномалий. Цитогенетическое обследование детей показано не только при подозрении на синдром Дауна, но и при клинически установленном диагнозе, поскольку цитогенетическая характеристика пациента необходима для прогноза здоровья будущих детей у родителей и их родственников.

Этические проблемы при синдроме Дауна многоплановы. Несмотря на повышение риска рождения ребенка с синдромом Дауна и другими хромосомными синдромами, врач должен избегать прямых рекомендаций по ограничению деторождения у женщин старшей возрастной группы, так как риск по возрасту остается достаточно низким, особенно с учетом возможностей пренатальной диагностики.

Неудовлетворенность у родителей часто вызывает форма сообщения врачом о диагнозе синдрома Дауна у ребенка. Диагностировать синдром Дауна по фенотипическим признакам обычно можно сразу после родоразрешения. Врач, пытающийся отказаться от установления диагноза до исследования кариотипа, может потерять уважение родственников ребенка. Важно сообщить родителям как можно скорее после рождения ребенка, по крайней мере о ваших подозрениях, но не следует полностью информировать родителей ребенка о диагнозе. Нужно дать достаточно сведений, отвечая на непосредственные вопросы, и поддерживать контакт с родителями до того дня, когда станет возможным более детальное обсуждение. Немедленная информация должна включать объяснение этиологии синдрома для исключения взаимных обвинений супругов и описание исследований и процедур, необходимых для того, чтобы полностью оценить здоровье ребенка.

Полное обсуждение диагноза нужно провести, как только родильница более или менее оправится от стресса родоразрешения, обычно в 1-е сутки после родов. К этому времени у матерей возникает множество вопросов, на которые необходимо отвечать точно и определенно. Важно приложить все усилия, чтобы на этой встрече присутствовали оба родителя. Ребенок становится предметом непосредственного обсуждения. В этот период еще рано нагружать родителей всей информацией о заболевании, так как новые и сложные понятия требуют времени для осмысления.

Не пытайтесь давать прогнозы. Бесполезно пытаться точно предвидеть будущее любого ребенка. Древние мифы вроде: «По крайней мере он будет всегда любить и наслаждаться музыкой» - непростительны. Нужно представить картину, написанную широкими мазка-

ми, и отметить, что способности каждого ребенка развиваются индивидуально.

90% детей с синдромом Дауна, рожденных в России, родители оставляют на попечение государства. Родители (а часто и педиатры) не знают, что при правильном обучении такие дети могут стать полноценными членами общества.

Лечебная помощь детям с синдромом Дауна многопланова и неспецифична. Врожденные пороки сердца устраняются оперативно. Постоянно проводится общеукрепляющее лечение. Питание должно быть полноценным. Необходимы внимательный уход за больным ребенком, защита от действия вредных факторов окружающей среды (простуда, инфекции). Большие успехи в сохранении жизни детей с синдромом Дауна и их развитии обеспечивают специальные методы обучения, укрепления физического здоровья с раннего детства, некоторые формы лекарственной терапии, направленные на улучшение функций ЦНС. Многие больные с трисомией 21 теперь способны вести самостоятельную жизнь, овладевают несложными профессиями, создают семьи.

Синдром Патау - трисомия 13

Синдром Патау выделен в самостоятельную нозологическую форму в 1960 г. в результате генетического исследования у детей с врожденными пороками развития. Частота синдрома Патау среди новорожденных равна 1:5000-1:7000. Цитогенетические варианты этого синдрома следующие. Простая полная трисомия 13 как следствие нерасхождения хромосом в мейозе у одного из родителей (главным образом у матери) встречается у 80-85% больных. Остальные случаи обусловлены, в основном, передачей дополнительной хромосомы (точнее, ее длинного плеча) в робертсоновских транслокациях типа D/13 и G/13. Обнаружены и другие цитогенетические варианты (мозаицизм, изохромосома, неробертсоновские транслокации), но они встречаются крайне редко. Клиническая и патологоанатомическая картина простых трисомных форм и транслокационных форм не различается.

Соотношение полов при синдроме Патау близко к 1:1. Дети с синдромом Патау рождаются с истинной пренатальной гипоплазией (на 25-30% ниже средних величин), которую нельзя объяснить небольшой недоношенностью (средний срок гестации 38,3 нед). Ха-

Рис. 5.7. Новорожденные с синдромом Патау [тригоноцефалия (б); двусторонняя расщелина верхней губы и нёба (б); узкие глазные щели (б); низко расположенные (б) и деформированные (а) ушные раковины; микрогения (а); флексорное положение кистей].

рактерное осложнение беременности при вынашивании плода с синдромом Патау - многоводие: оно встречается почти в 50% случаев.

Синдром Патау сопровождается множественными врожденными пороками развития головного мозга и лица (рис. 5.7). Это патогенетически единая группа ранних (и, следовательно, тяжелых) нарушений формирования головного мозга, глазных яблок, костей мозговой и лицевой частей черепа. Окружность черепа обычно уменьшена, встречается и тригоноцефалия. Лоб скошенный, низкий; глазные щели узкие, переносье запавшее, ушные раковины низко расположенные и деформированные. Типичный признак синдрома Патау - расщелины верхней губы и нёба (обычно двусторонние). Всегда обнаруживаются пороки нескольких внутренних органов в разных комбинациях: дефекты перегородок сердца, незавершенный поворот кишечника, кисты почек, аномалии внутренних половых органов, дефекты поджелудочной железы. Как правило, наблюдаются полидактилия (чаще двусторонняя и на руках) и флексорное положение кистей. Частота разных симптомов у детей с синдромом Патау представлена в табл. 5.4.

Таблица 5.4. Основные врожденные пороки при синдроме Патау (по Г.И. Лазюку)

Окончание табл. 5.4

Клиническая диагностика синдрома Патау основывается на сочетании характерных пороков развития. При подозрении на синдром Патау показано УЗИ всех внутренних органов.

В связи с тяжелыми врожденными пороками развития большинство детей с синдромом Патау умирают в первые недели или месяцы жизни (95% умирают до 1 года). Однако некоторые больные живут несколько лет. Более того, в развитых странах отмечается тенденция

увеличения продолжительности жизни больных с синдромом Патау до 5 лет (около 15% больных) и даже до 10 лет (2-3% больных).

Другие синдромы врожденных пороков развития (синдромы Меккеля и Мора, тригоноцефалия Опица) по отдельным признакам совпадают с синдромом Патау. Решающий фактор в диагностике - исследование хромосом. Цитогенетическое исследование показано во всех случаях, в том числе у умерших детей. Точный цитогенетический диагноз необходим для прогноза здоровья будущих детей в семье.

Лечебная помощь детям с синдромом Патау неспецифическая: операции по поводу врожденных пороков развития (по жизненным показаниям), общеукрепляющее лечение, тщательный уход, профилактика простудных и инфекционных болезней. Дети с синдромом Патау практически всегда глубокие идиоты.

Синдром Эдвардса - трисомия 18

Почти во всех случаях синдром Эдвардса обусловлен простой трисомной формой (гаметическая мутация у одного из родителей). Встречаются и мозаичные формы (нерасхождение на ранних стадиях дробления). Транслокационные формы крайне редки, и, как правило, это частичные, а не полные трисомии. Клинических различий между цитогенетически различающимися формами трисомии нет.

Частота синдрома Эдвардса среди новорожденных составляет 1:5000-1:7000. Соотношение мальчиков и девочек 1:3. Причины преобладания девочек среди больных пока неясны.

При синдроме Эдвардса отмечается выраженная задержка пренатального развития при нормальной продолжительности беременности (роды в срок). На рис. 5.8-5.11 показаны пороки при синдроме Эдвардса. Это множественные врожденные пороки развития лицевой части черепа, сердца, костной системы, половых органов. Череп долихоцефалической формы; нижняя челюсть и отверстие рта маленькие; глазные щели узкие и короткие; ушные раковины деформированные и низко расположенные. Из других внешних признаков отмечаются флексорное положение кистей, аномальная стопа (пятка выступает, свод провисает), I палец стоп короче II пальца. Спинномозговая грыжа и расщелина губы встречаются редко (5% случаев синдрома Эдвардса).

Рис. 5.8. Новорожденный с синдромом Эдвардса (выступающий затылок, микрогения, флексорное положение кисти).

Рис. 5.9. Характерное для синдрома Эдвардса положение пальцев (возраст ребенка 2 мес).

Рис. 5.10. Стопа-качалка (пятка выступает, свод провисает).

Рис. 5.11. Гипогенитализм у мальчика (крипторхизм, гипоспадия).

Многообразная симптоматика синдрома Эдвардса у каждого больного проявляется лишь частично. Частота отдельных врожденных пороков приведена в табл. 5.5.

Таблица 5.5. Основные врожденные пороки при синдроме Эдвардса (по Г.И. Лазюку)

Окончание табл. 5.5

Как видно из табл. 5.5, наиболее значимы в диагностике синдрома Эдвардса изменения мозгового черепа и лица, опорно-двигательного аппарата, пороки развития сердечно-сосудистой системы.

Дети с синдромом Эдвардса умирают в раннем возрасте (90% до 1 года) от осложнений, обусловленных врожденными пороками развития (асфиксия, пневмония, кишечная непроходимость, сердечнососудистая недостаточность). Клиническая и даже патологоанатомическая дифференциальная диагностика синдрома Эдвардса сложна, поэтому во всех случаях показано цитогенетическое исследование. Показания для него те же, что и при трисомии 13 (см. выше).

Трисомия 8

Клиническая картина синдрома трисомии 8 впервые описана разными авторами в 1962 и 1963 гг. у детей с отставанием в умственном развитии, отсутствием надколенника и другими врожденными пороками развития. Цитогенетически был констатирован мозаицизм по хромосоме из группы С или D, поскольку индивидуальной идентификации хромосом в тот период еще не было. Полная трисомия 8, как правило, летальна. Ее часто обнаруживают у пренатально погибших эмбрионов и плодов. Среди новорожденных трисомия 8 встречается с частотой не более чем 1:5000, преобладают мальчики (соотношение мальчиков и девочек 5:2). Большинство описанных случаев (около 90%) относится к мозаичным формам. Заключение о полной трисомии у 10% больных основывалось на исследовании одной ткани, чего в строгом смысле недостаточно для исключения мозаицизма.

Трисомия 8 - результат вновь возникшей мутации (нерасхождение хромосом) на ранних стадиях бластулы, за исключением редких случаев новой мутации в гаметогенезе.

Различий в клинической картине полных и мозаичных форм не выявлено. Тяжесть клинической картины широко варьирует. Причины таких вариаций неизвестны. Корреляций между тяжестью заболевания и долей трисомных клеток не обнаружено.

Дети с трисомией 8 рождаются доношенными. Возраст родителей из общей выборки не выделяется.

Для болезни наиболее характерны отклонения в строении лица, пороки опорно-двигательного аппарата и мочевой системы (рис. 5.12- 5.14). Это выступающий лоб, косоглазие, эпикант, глубоко посаженные глаза, гипертелоризм глаз___

и сосков, высокое нёбо (иногда расщелина), толстые губы, вывернутая нижняя губа, большие ушные раковины с толстой мочкой, контрактуры суставов, камптодактилия, аплазия надколенника, глубокие борозды между межпальцевыми подушечками, четырехпальцевая складка, аномалии ануса. При УЗИ выявляются аномалии позвоночника (добавочные позвонки, неполное закрытие по-

Рис. 5.12. Трисомия 8 (мозаицизм) (вывернутая нижняя губа, эпикант, аномальная ушная раковина).

Рис. 5.13. 10-летний мальчик с трисомией 8 (умственная недостаточность, большие оттопыренные ушные раковины с упрощенным рисунком).

Рис. 5.14. Контрактуры межфаланговых суставов при трисомии 8.

звоночного канала), аномалии формы и положения ребер или добавочные ребра. В табл. 5.6 приведены обобщенные данные о встречаемости отдельных симптомов (или пороков) при трисомии 8.

Таблица 5.6. Основные признаки трисомии 8 (по Г.И. Лазюку)

Окончание табл. 5.6.

Примечание. Полужирным шрифтом выделены наиболее значимые для диагностики признаки.

Число симптомов у новорожденных составляет от 5 до 15 и более.

При трисомии 8 прогноз физического, психического развития и жизни неблагоприятный, хотя описаны пациенты в возрасте 17 лет. Со временем у больных проявляются умственная отсталость, гидроцефалия, паховая грыжа, новые контрактуры, аплазия мозолистого тела, кифоз, сколиоз, аномалии тазобедренного сустава, узкий таз, узкие плечи.

Методов специфического лечения нет. Оперативные вмешательства проводят по жизненным показаниям.

Полисомии по половым хромосомам

Это большая группа хромосомных болезней, представленная различными комбинациями дополнительных Х- или Y-хромосом, а в случаях мозаицизма - комбинациями разных клонов. Общая

частота полисомии по Х- или Y-хромосомам среди новорожденных составляет 1,5:1000-2:1000. В основном это полисомии XXX, XXY и XYY. Мозаичные формы составляют примерно 25%. В табл. 5.7 представлены типы полисомий по половым хромосомам.

Таблица 5.7. Типы полисомий по половым хромосомам у человека

Синдром трипло-Х (47,ХХХ). Среди новорожденных девочек частота синдрома составляет 1:1000. Женщины с кариотипом XXX в полном или мозаичном варианте имеют в основном нормальное физическое и психическое развитие, обычно выявляются случайно при обследовании. Это объясняется тем, что в клетках две X-хромо- сомы гетерохроматинизированы (два тельца полового хроматина), а функционирует лишь одна, как и у нормальной женщины. Как правило, у женщины с кариотипом XXX нет отклонений в половом развитии, она имеет нормальную плодовитость, хотя риск хромосомных нарушений у потомства и возникновения спонтанных абортов повышен. Интеллектуальное развитие нормальное или на нижней границе нормы. Лишь у некоторых женщин с трипло-Х есть нарушения репродуктивной функции (вторичная аменорея, дисменорея, ранняя менопауза и др.). Аномалии развития наружных половых органов (признаки дизэмбриогенеза) обнаруживаются лишь при тщательном обследовании, выражены незначительно и не служат поводом для обращения к врачу.

Варианты синдрома Х-полисомии без Y-хромосомы с числом Х-хромосом более 3 встречаются редко. С увеличением числа дополнительных Х-хромосом нарастают отклонения от нормы. У женщин с тетра- и пентасомией описаны отклонения в умственном развитии, черепно-лицевые дизморфии, аномалии зубов, скелета и половых органов. Однако женщины даже с тетрасомией по Х-хромосоме имеют потомство.

Синдром Клайнфелтера включает случаи полисомии по половым хромосомам, при которых имеется не менее двух Х-хромосом и не менее одной Y-хромосомы. Наиболее часто встречающийся и типичный по клинической картине синдром - это синдром Клайнфелтера с набором 47,ХХY Этот синдром (в полном и мозаичном вариантах) встречается с частотой 1:500-1:750 новорожденных мальчиков. Варианты полисомии с большим числом Х- и Y-хромосом (см. табл. 5.7) встречаются редко. Клинически они также относятся к синдрому Клайнфелтера.

Присутствие Y-хромосомы определяет формирование мужского пола. До периода полового созревания мальчики развиваются почти нормально, лишь с небольшим отставанием в психическом развитии. Генетический дисбаланс в связи с добавочной Х-хромосомой клинически проявляется в период полового созревания в виде недоразвития яичек и вторичных мужских половых признаков.

Больные имеют высокий рост, женский тип телосложения, гинекомастию, слабое оволосение лица, подмышечных впадин и лобка (рис. 5.15). Яички уменьшены, гистологически обнаруживаются дегенерация герминативного эпителия и гиалиноз семенных канатиков. Больные бесплодны (азооспермия, олигоспермия).

Синдром дисомии по Y-хромосоме (47,XYY) встречается с частотой 1:1000 новорожденных мальчиков.

Рис. 5.15. Синдром Клайнфелтера. Высокий рост, гинекомастия, оволосение на лобке по женскому типу.

Большинство мужчин с таким набором хромосом не отличаются от нормы по физическому и умственному развитию, имеют рост немного выше среднего. Заметных отклонений ни в половом развитии, ни в гормональном статусе, ни в плодовитости у большинства XYY-индивидов нет. Не исключены некоторые особенности поведения: склонность к агрессивным и даже криминальным поступкам.

Синдром Шерешевского-Тернера (45,Х) - единственная форма моносомии у живорожденных. Не менее 90% зачатий с кариотипом 45,Х абортируется спонтанно. Моносомия Х составляет 15- 20% среди всех аномальных кариотипов абортусов.

Частота синдрома Шерешевского-Тернера равна 1:2000-1:5000 новорожденных девочек. Цитогенетика синдрома многообразна. Наряду с истинной моносомией во всех клетках (45,X) встречаются другие формы хромосомных аномалий по половым хромосомам. Это делеции короткого или длинного плеча Х-хромосомы , изохромосомы , кольцевые хромосомы , а также различные варианты мозаицизма. Лишь 50-60% пациенток с синдромом Шерешевского- Тернера имеют простую полную моносомию (45,Х). Единственная Х-хромосома в 80-85% случаев имеет материнское происхождение и лишь в 15-20% - отцовское.

В остальных случаях синдром обусловлен разнообразным мозаицизмом (в целом 30-40%) и более редкими вариантами делеций, изохромосом, кольцевых хромосом.

Клинически синдром Шерешевского-Тернера проявляется в 3 направлениях: 1) гипогонадизм, недоразвитие половых органов и вторичных половых признаков; 2) врожденные пороки развития; 3) низкий рост.

Со стороны половой системы отмечаются отсутствие гонад (агенезия гонад), гипоплазия матки и маточных труб, первичная аменорея, скудное оволосение лобка и подмышечных впадин, недоразвитие молочных желез, недостаточность эстрогенов, избыток гипофизарных гонадотропинов. У детей с синдромом Шерешевс- кого-Тернера часто (до 25% случаев) встречаются разные врожденные пороки сердца и почек.

Внешний вид больных достаточно своеобразен (хотя и не всегда). У новорожденных и детей грудного возраста короткая шея с избытком кожи и крыловидными складками, лимфатический отек стоп (рис. 5.16), голеней, кистей рук и предплечий. В школьном и особенно в подростковом возрасте выявляется отставание в росте,

в развитии вторичных половых признаков (рис. 5.17). У взрослых отмечают нарушения скелета, черепно-лицевые дизморфии, вальгусную девиацию коленных и локтевых суставов, укорочение метакарпальных и метатарзальных костей, остеопороз, бочкообразную грудную клетку, низкий рост волос на шее, антимонголоидный разрез глазных щелей, птоз, эпикант, ретрогению, низкое расположение ушных раковин. Рост взрослых больных на 20-30 см ниже среднего. Тяжесть клинических (фенотипических) проявлений зависит от многих пока неизвестных факторов, в том числе от типа хромосомной патологии (трисомия, делеция, изохромосома). Мозаичные формы болезни, как правило, имеют более слабые проявления в зависимости от соотношения клонов 46ХХ:45Х.

Рис. 5.16. Лимфатический отек стопы у новорожденного с синдромом Шерешевского-Тернера. Маленькие выпуклые ногти.

Рис. 5.17. Девочка с синдромом Шерешевского-Тернера (шейные крыловидные складки, широко расположенные и недоразвитые соски молочных желез).

В табл. 5.8 представлены данные о частоте основных симптомов при синдроме Шерешевского-Тернера.

Лечение больных с синдромом Шерешевского-Тернера комплексное: 1) реконструктивная хирургия (врожденные пороки внут-

ренних органов); 2) пластическая хирургия (удаление крыловидных складок и т.п.); 3) гормональное лечение (эстрогены, гормон роста); 4) психотерапия. Своевременное применение всех методов лечения, включая применение генно-инженерного гормона роста, дает больным возможность достичь приемлемого роста и вести полноценную жизнь.

Таблица 5.8. Клинические симптомы синдрома Шерешевского-Тернера и их встречаемость

Синдромы частичных анеуплоидий

Эта многочисленная группа синдромов обусловлена хромосомными мутациями. Какой бы вид хромосомной мутации ни был исходно (инверсия, транслокация, дупликация, делеция), возникновение клинического хромосомного синдрома определяется либо избытком (частичная трисомия), либо недостатком (частичная моносомия) генетического материала или одновременно тем и другим эффектом разных измененных участков хромосомного набора. К настоящему времени обнаружено около 1000 разных вариантов хромосомных мутаций, унаследованных от родителей или возникших в раннем эмбриогенезе. Однако клиническими формами хромосомных синдромов считают только те перестройки (их около 100), по которым описано несколько пробандов с совпадением характера цитогенетических изменений и клинической картины (корреляция кариотипа и фенотипа).

Частичные анеуплоидии возникают главным образом в результате неточного кроссинговера в хромосомах с инверсиями или транслокациями. Лишь в небольшом числе случаев возможно первичное возникновение делеций в гамете или в клетке на ранних стадиях дробления.

Частичные анеуплоидии, как и полные, вызывают резкие отклонения в развитии, поэтому относятся к группе хромосомных болезней. Большинство форм частичных трисомий и моносомий не повторяют клиническую картину полных анеуплоидий. Они являются самостоятельными нозологическими формами. Лишь у небольшого числа пациентов клинический фенотип при частичных анеуплоидиях совпадает с таковым при полных формах (синдром Шерешевского-Тернера, синдром Эдвардса, синдром Дауна). В этих случаях речь идет о частичной анеуплоидии по так называемым критическим для развития синдрома районам хромосом.

Какой-либо зависимости тяжести клинической картины хромосомного синдрома от формы частичной анеуплоидии или от индивидуальной хромосомы нет. Величина вовлеченного в перестройку участка хромосомы может иметь значение, но случаи подобного рода (меньшая или большая длина) должны рассматриваться как разные синдромы. Общие закономерности корреляций клинической картины и характера хромосомных мутаций выявить трудно, потому что многие формы частичных анеуплоидий элиминируются в эмбриональном периоде.

Фенотипические проявления любых аутосомных делеционных синдромов состоят из двух групп аномалий: неспецифических находок, общих для многих различных форм частичных аутосомных анеуплоидий (задержка пренатального развития, микроцефалия, гипертелоризм, эпикант, явно низко распололженные уши, микрогнатия, клинодактилия и т. д.); комбинации находок, типичных для данного синдрома. Наиболее подходящее объяснение причин неспецифических находок (большинство из которых не имеют клинического значения) - это неспецифические эффекты аутосомного дисбаланса как такового, а не результаты делеций или дупликаций специфических локусов.

Хромосомным синдромам, обусловленным частичными анеуплоидиями, присущи общие свойства всех хромосомных болезней: врожденные нарушения морфогенеза (врожденные пороки развития, дизморфии), нарушение постнатального онтогенеза, тяжесть клинической картины, сокращенная продолжительность жизни.

Синдром «кошачьего крика» - частичная моносомия по короткому плечу хромосомы 5 (5р-). Синдром моносомии 5р- был первым описанным синдромом, обусловленным хромосомной мутацией (делецией). Это открытие сделал Дж. Лежен в 1963 г.

У детей с такой хромосомной аномалией отмечается необычный плач, напоминающий требовательное кошачье мяуканье или крик. По этой причине синдром сначала был назван синдромом «кошачьего крика». Частота синдрома достаточно высокая для делеционных синдромов - 1: 45 000. Описано несколько сотен больных, поэтому цитогенетика и клиническая картина этого синдрома изучены хорошо.

Цитогенетически в большинстве случаев выявляется делеция с утратой от 1/3 до 1/2 длины короткого плеча хромосомы 5. Потеря всего короткого плеча или, наоборот, незначительного участка встречается редко. Для развития клинической картины синдрома 5р- имеет значение не величина утраченного участка, а конкретный фрагмент хромосомы. За развитие полного синдрома ответствен лишь незначительный участок в коротком плече хромосомы 5 . Помимо простой делеции, при этом синдроме обнаружены и другие цитогенетические варианты: кольцевая хромосома 5 (естественно, с делецией соответствующего участка короткого плеча); мозаицизм по делеции; реципрокная транслокация короткого плеча хромосомы 5 (с потерей критического участка) с другой хромосомой.

Клиническая картина синдрома 5р- довольно сильно различается у отдельных больных по сочетанию врожденных пороков развития органов. Наиболее характерный признак - «кошачий крик» - обусловлен изменением гортани (сужение, мягкость хрящей, уменьшение надгортанника, необычная складчатость слизистой оболочки). Практически у всех больных имеются те или иные изменения мозговой части черепа и лица: лунообразное лицо, микроцефалия, гипертелоризм, микрогения, эпикант, антимонголоидный разрез глаз, высокое нёбо, плоская спинка носа (рис. 5.18, 5.19). Ушные раковины деформированы и расположены низко. Кроме того, встречаются врожденные пороки сердца и некоторых других внутренних органов, изменения костно-мышечной системы (синдактилия стоп, клинодактилия V пальца кисти, косолапость). Выявляют мышечную гипотонию, а иногда и диастаз прямых мышц живота.

Выраженность отдельных признаков и клинической картины в целом меняется с возрастом. Так, «кошачий крик», мышечная гипо-

Рис. 5.18. Ребенок с выраженными признаками синдрома «кошачьего крика» (микроцефалия, лунообразное лицо, эпикант, гипертелоризм, широкая плоская спинка носа, низко расположенные ушные раковины).

Рис. 5.19. Ребенок с маловыраженными признаками синдрома «кошачьего крика».

тония, лунообразное лицо с возрастом исчезают почти полностью, а микроцефалия выявляется более отчетливо, становятся заметнее психомоторное недоразвитие, косоглазие. Продолжительность жизни больных с синдромом 5р- зависит от тяжести врожденных пороков внутренних органов (особенно сердца), выраженности клинической картины в целом, уровня медицинской помощи и повседневной жизни. Большинство больных умирают в первые годы, около 10% больных достигают 10-летнего возраста. Имеются единичные описания больных в возрасте 50 лет и старше.

Во всех случаях больным и их родителям показано цитогенетическое обследование, потому что у одного из родителей может быть реципрокная сбалансированная транслокация, которая при прохождении через стадию мейоза может обусловливать делецию участка 5р- (15,1-15,2).

Синдром Вольфа-Хиршхорна (частичная моносомия 4р-) обусловлен делецией сегмента короткого плеча хромосомы 4. Клинически синдром Вольфа-Хиршхорна проявляется многочисленны-

ми врожденными пороками с последующей резкой задержкой физического и психомоторного развития. Уже внутриутробно отмечается гипоплазия плода. Средняя масса тела детей при рождении от доношенной беременности составляет около 2000 г, т.е. пренатальная гипоплазия выражена больше, чем при других частичных моносомиях. У детей с синдромом Вольфа-Хиршхорна отмечаются следующие признаки (симптомы): микроцефалия, клювовидный нос, гипертелоризм, эпикант, аномальные ушные раковины (часто с преаурикулярными складками), расщелины верхней губы и нёба, аномалии глазных яблок, антимонголоидный разрез глаз, маленький рот, гипоспадия, крипторхизм, сакральная ямка, деформация стоп и др. (рис. 5.20). Наряду с пороками развития наружных органов более чем у 50% детей имеются пороки внутренних органов (сердца, почек, ЖКТ).

Жизнеспособность детей резко снижена, большинство умирают в возрасте до 1 года. Описан лишь 1 больной в возрасте 25 лет.

Цитогенетика синдрома довольно характерная, как и многих делеционных синдромов. Примерно в 80% случаев у пробанда выявляется делеция части короткого плеча хромосомы 4, а у родителей кариотипы нормальные. Остальные случаи обусловлены транслокационными комбинациями или кольцевыми хромосомами, но всегда при этом отмечается потеря фрагмента 4р16.

Рис. 5.20. Дети с синдромом Вольфа-Хиршхорна (микроцефалия, гипертелоризм, эпикант, аномальные ушные раковины, косоглазие, микрогения, птоз).

Цитогенетическое обследование больного и его родителей показано для уточнения диагноза и прогноза здоровья будущих детей, поскольку родители могут иметь сбалансированные транслокации. Частота рождения детей с синдромом Вольфа-Хиршхорна невысокая (1:100 000).

Синдром частичной трисомии по короткому плечу хромосомы 9 (9р+) - наиболее частая форма частичных трисомий (опубликовано около 200 сообщений о таких больных), синдром клинически выражен.

Клиническая картина многообразна и включает внутриутробные и постнатальные нарушения развития: задержку роста, умственную отсталость, микробрахицефалию, антимонголоидный разрез глаз, энофтальм (глубоко посаженные глаза), гипертелоризм, округлый кончик носа, опущенные углы рта, низко расположенные оттопыренные ушные раковины с уплощенным рисунком, гипоплазию (иногда дисплазию) ногтей (рис. 5.21). Врожденные пороки сердца обнаружены у 25% больных.

Реже встречаются другие врожденные аномалии, свойственные всем хромосомным болезням: эпикант, косоглазие, микрогнатия, высокое арковидное нёбо, сакральный синус, синдактилии.

Больные с синдромом 9р+ рождаются в срок. Пренатальная гипоплазия выражена умеренно (средняя масса тела новорожденных 2900-3000 г). Жизненный прогноз сравнительно благоприятный. Больные доживают до пожилого и преклонного возраста.

Цитогенетика синдрома 9р+ многообразна. Большая часть случаев - результат несбалансированных транс-

Рис. 5.21. Синдром трисомии 9р+ (гипертелоризм, птоз, эпикант, луковицеобразный нос, короткий фильтр, большие, низко расположенные ушные раковины, толстые губы, короткая шея).

а - ребенок 3-х лет; б - женщина 21 года.

локаций (семейных или спорадических). Описаны и простые дупликации, изохромосомы 9р. Клинические проявления синдрома однотипны при разных цитогенетических вариантах, что вполне объяснимо, поскольку во всех случаях имеется тройной набор генов части короткого плеча хромосомы 9.

Микроцитогенетические синдромы

В эту недавно выделенную группу входят синдромы, обусловленные незначительными делециями или дупликациями строго определенных участков хромосом. Соответственно их называют микроделеционными и микродупликационными синдромами. Многие из этих синдромов первоначально были описаны как доминантные заболевания (точечные мутации), но с помощью современных высокоразрешающих цитогенетических методов (особенно молекулярно-цитогенетических) установлена истинная этиология синдромов. Стало возможным обнаруживать делеции и дупликации протяженностью до одного гена с примыкающими областями.

На примере расшифровки микроцитогенетических синдромов можно видеть взаимное проникновение цитогенетических методов в генетический анализ, молекулярно-генетических методов в цитогенетику. Это позволяет расшифровывать природу ранее непонятных наследственных синдромов (болезней), а также выяснять функциональные зависимости между генами. Термин «микроцитогенетика» уже вошел в литературу. Еще не установлено, что лежит в основе развития микроцитогенетических синдромов - отсутствие структурного гена или более протяженного участка, включающего конкретный ген, как влияет на проявление микроделеционного синдрома состояние локуса в гомологичной хромосоме. По-видимому, природа клинических проявлений разных микроделеционных синдромов различна. Патологический процесс при некоторых из них развертывается через активацию онкогенов, клиника других синдромов обусловлена не только делециями как таковыми, но и явлениями хромосомного импринтинга и однородительских дисомий. Клинические и цитогенетические характеристики микроделеционных синдромов постоянно уточняются. В табл. 5.9 суммированы сведения о микроцитогенетических синдромах (микроделеционных и микродупликационных).

Большинство микроцитогенетических синдромов встречается редко (1:50 000-1:100 000 новорожденных). Их клиническая картина,

Таблица 5.9. Общие сведения о микроцитогенетических синдромах

Рис. 5.22. Синдром Лан- гера-Гидеона. Множественные экзостозы.

Рис. 5.23. Мальчик с синдромом Прадера-Вилли.

Рис. 5.24. Девочка с синдромом Ангельмана.

Рис. 5.25. Ребенок с синдромом ДиДжорджи.

Рис. 5.26. Поперечные насечки на мочке уха (при синдроме Беквита-Видемана - типичный симптом (указаны стрелкой).

как правило, отчетливая. Диагноз можно поставить по совокупности симптомов. Однако в связи с прогнозом здоровья будущих детей в семье, в том числе у родственников родителей пробанда, необходимо провести высокоразрешающее цитогенетическое исследование у пробанда и его родителей.

Рис. 5.27. Три класса мутаций при синдроме Прадера-Вилли (СПВ) и Ангельмана (СА). М - мать; О - отец; ОРД - однородительская дисомия.

Клинические проявления микроцитогенетических синдромов сильно варьируют в связи с разной протяженностью делеции или дупликации, а также в связи с родительской принадлежностью микроперестройки - унаследована ли она от отца или от матери. В последнем случае речь идет об импринтинге на хромосомном уровне. Это явление было открыто при цитогенетическом изучении двух клинически различающихся синдромов (Прадера-Вилли и Ангельмана). В обоих случаях микроделеция наблюдается в хромосоме 15 (участок q11-q12). Лишь молекулярно-цитогенетическими методами установлена истинная природа синдромов (см. табл. 5.9). Участок q11-q12 в хромосоме 15 дает настолько выраженный эффект импринтинга, что синдромы могут быть вызваны однородительскими дисомиями (рис. 5.27) или мутациями с эффектом импринтинга.

Как видно из рис. 5.27, дисомия по материнским хромосомам 15 вызывает синдром Прадера-Вилли (потому что отсутствует участок q11-q12 отцовской хромосомы). Такой же эффект дает делеция этого же участка или мутация в отцовской хромосоме при разнородительской дисомии. Прямо противоположная ситуация наблюдается при синдроме Ангельмана.

Факторы повышенного риска рождения детей с хромосомными болезнями

В последние десятилетия многие исследователи обращались к причинам возникновения хромосомных болезней. Не вызывало со-

мнений, что образование хромосомных аномалий (и хромосомных, и геномных мутаций) происходит спонтанно. Экстраполировались результаты экспериментальной генетики и предполагался индуцированный мутагенез у человека (ионизирующая радиация, химические мутагены, вирусы). Однако реально причины возникновения хромосомных и геномных мутаций в зародышевых клетках или на ранних стадиях развития зародыша до сих пор не расшифрованы.

Проверялись многие гипотезы нерасхождения хромосом (сезонность, расово-этническая принадлежность, возраст матери и отца, задержанное оплодотворение, порядок рождения, семейное накопление, лекарственное лечение матерей, вредные привычки, негормональная и гормональная контрацепция, флюридины, вирусные болезни у женщин). В большинстве случаев эти гипотезы не подтвердились, но генетическая предрасположенность к болезни не исключается. Хотя в большинстве случаев нерасхождение хромосом у человека спорадическое, можно предполагать, что оно в определенной степени генетически детерминировано. Об этом свидетельствуют следующие факты:

Потомство с трисомией появляется у одних и тех же женщин повторно с частотой не менее 1%;

Родственники пробанда с трисомией 21 или другими анеуплоидиями имеют несколько повышенный риск рождения ребенка с анеуплоидией;

Кровное родство родителей может повышать риск трисомии у потомства;

Частота зачатий с двойной анеуплоидией может быть выше, чем предсказывается, в соответствии с частотой отдельных анеуплоидий.

К биологическим факторам повышения риска нерасхождения хромосом относится возраст матери, хотя механизмы этого явления неясны (табл. 5.10, рис. 5.28). Как видно из табл. 5.10, риск рождения ребенка с хромосомной болезнью, обусловленной анеуплоидией, с возрастом матери постепенно повышается, но особенно резко после 35 лет. У женщин старше 45 лет каждая 5-я беременность завершается рождением ребенка с хромосомной болезнью. Наиболее четко возрастная зависимость проявляется для трисомии 21 (болезнь Дауна). Для анеуплоидий по половым хромосомам возраст родителей либо совсем не имеет значения, либо его роль очень незначительна.

Из рис. 5.28 видно, что с возрастом повышается также частота спонтанных абортов, которая к 45 годам увеличивается в 3 раза и более. Такое положение можно объяснить тем, что спонтанные

Рис. 5.28. Зависимость частоты хромосомных аномалий от возраста метери.

1 - спонтанные аборты при зарегистрированных беременностях; 2 - общая частота хромосомных аномалий во II триместре; 3 - синдром Дауна во II триместре; 4 - синдром Дауна среди живорожденных.

аборты во многом обусловлены (до 40-45%) хромосомными аномалиями, частота которых имеет возрастную зависимость.

Таблица 5.10. Зависимость частоты рождения детей с хромосомными болезнями от возраста матери

Выше были рассмотрены факторы повышенного риска анеуплоидий у детей от кариотипически нормальных родителей. По существу, из многочисленных предполагаемых факторов

только два имеют значение для планирования беременности, а точнее, являются строгими показаниями для пренатальной диагностики. Это рождение ребенка с анеуплоидией по аутосомам и возраст матери старше 35 лет.

Цитогенетическое исследование у супружеских пар позволяет выявить кариотипические факторы риска: анеуплоидию (в основном в мозаичной форме), робертсоновские транслокации, сбалансированные реципрокные транслокации, кольцевые хромосомы, инверсии. Повышение риска зависит от типа аномалии (от 1 до 100%): например, если у одного из родителей в робертсоновскую транслокацию вовлечены гомологичные хромосомы (13/13, 14/14, 15/15, 21/21, 22/22), то здорового потомства у носителя таких перестроек быть не может. Беременности будут заканчиваться либо спонтанными абортами (во всех случаях транслокаций 14/14, 15/15, 22/22 и частично при транслокациях 13/13, 21/21), либо рождением детей с синдромом Патау (13/13) или синдромом Дауна (21/21).

Для расчета риска рождения ребенка с хромосомной болезнью в случае аномального кариотипа у родителей были составлены таблицы эмпирического риска. Теперь в них почти нет необходимости. Методы пренатальной цитогенетической диагностики позволили перейти от оценки риска к установлению диагноза у эмбриона или плода.

Ключевые слова и понятия Изохромосомы

Импринтинг на хромосомном уровне История открытия хромосомных болезней Классификация хромосомных болезней Корреляция фено- и кариотипа Микроделеционные синдромы Общие клинические черты хромосомных болезней Однородительские дисомии Патогенез хромосомных болезней Показания для цитогенетической диагностики Робертсоновские транслокации Сбалансированные реципрокные транслокации Типы хромосомных и геномных мутаций Факторы риска при хромосомных болезнях Хромосомные аномалии и спонтанные аборты Частичные анеуплоидии

Частичные моносомии Частичные трисомии Частота хромосомных болезней Эффекты хромосомных аномалий

Контрольные вопросы

1. Какие виды хромосомных аномалий не встречаются у живорожденных:

а) трисомии по аутосомам;

в) моносомии по аутосомам;

г) моносомия по Х-хромосоме;

д) нуллисомия по Х-хромосоме.

2. Какие мутации относятся к геномным:

а) инверсии, транслокации, дупликации, делеции;

б) полиплоидии, анеуплоидии;

в) триплоидии, тетраплоидии;

г) внутрихромосомные и межхромосомные перестройки.

3. Выберите основные показания для исследования кариотипа:

а) в анамнезе умершие дети с множественными пороками развития;

б) хроническое прогредиентное течение болезни с началом в детском возрасте;

в) неврологические проявления (судороги, снижение или повышение мышечного тонуса, спастические парезы);

г) олигофрения в сочетании с пороками развития.

4. Укажите формулы кариотипа при синдроме Шерешевского-Тернера:

а) 46,ХХ/45,Х0;

5. Метод точной диагностики хромосомных болезней:

а) клинический;

б) дерматоглифический;

в) цитогенетический;

г) клинико-генеалогический;

д) специфическая биохимическая диагностика.

6. Риск рождения ребенка с хромосомными аномалиями существенно повыша-

ется в возрастных интервалах:

а) 20-25 лет;

б) 25-30 лет;

г) 30-35 лет;

д) 35-40 лет.

7. К хромосомным относятся мутации:

а) делеция;

б) триплоидия;

в) инверсия;

г) изохромосома.

8. Формула кариотипа при синдроме «кошачьего крика»:

б) 46,ХХ, 9р+;

в) 46,ХХ, 5р-;

г) 46,ХХ/45,Х0.

9. Показания для проведения цитогенетического анализа:

а) гепатоспленомегалия, катаракта, умственная отсталость;

б) привычное невынашивание беременности и мертворождения в анамнезе;

в) непереносимость некоторых пищевых продуктов, гемолитические кризы;

г) умственная отсталость, микроаномалии развития или врожденные пороки развития.

10. Формулы хромосомного набора у больного с синдромом Клайнфелтера:

г) 46,ХУ,5р-;

11. Полиплоидия - это:

а) уменьшение числа хромосом в наборе на несколько пар;

б) диплоидный набор хромосом в гамете;

в) увеличение числа хромосом, кратное гаплоидному набору.

12. В основе хромосомных болезней лежат хромосомные и геномные мутации, возникающие:

а) только в половых клетках;

б) в соматических и половых клетках;

в) только в соматических клетках.

13. Укажите формулу кариотипа при синдроме Патау:

а) 47,ХХ, 18+;

б) 47,ХY, 13+;

в) 46,ХХ, 5р-;

14. Летальные нарушения кариотипа:

а) моносомии по Х-хромосоме;

б) трисомии по половым хромосомам;

в) моносомии по аутосомам;

г) трисомии по аутосомам.

15. Набор симптомов, включающий умственную отсталость, долихоцефалию, деформированные ушные раковины, флексорное положение пальцев рук, врожденный порок сердца, указывает на:

а) синдром Эдвардса;

б) синдром Патау;

в) синдром Дауна;

г) синдром «кошачьего крика».

16. Показания для проведения кариотипирования:

а) задержка физического и полового развития, гипогонадизм, гипогенитализм;

б) задержка психомоторного развития в сочетании с диспластичным фенотипом;

в) приобретенные деформации позвоночника и грудины, помутнение роговицы, гепатоспленомегалия;

г) прогредиентная утрата приобретенных навыков, судорожный синдром, спастические параличи.

17. Анеуплоидия - это:

а) увеличение хромосомного набора на целый гаплоидный набор;

б) изменение числа хромосом в результате добавления одной или нескольких хромосом;

в) изменение числа хромосом в результате утери одной или нескольких хромосом;

г) изменение числа хромосом в результате утери или добавления одной или нескольких хромосом.

18. Правильная формула кариотипа при синдроме Эдвардса:

а) 46,ХY, 21 + ;

в) 47,ХХ, 13+;

г) 47,ХХ, 18+;

д) 46,ХХ, 9р+;

е) 45,t (13/21).

19. Наиболее тяжелые последствия вызывают:

а) моносомии по половым хромосомам;

б) трисомии по половым хромосомам;

в) моносомии по аутосомам;

г) трисомии по аутосомам.

20. Симптомокомплекс, включающий микроцефалию, расщелину губы и нёба, полидактилию и поликистоз почек, наиболее характерен для:

а) синдрома Эдвардса;

б) синдрома Дауна;

в) синдрома Вольфа-Хиршхорна;

г) синдрома Патау.

21. Клинически хромосомные болезни проявляются:

а) множественными признаками дизморфогенеза;

б) врожденными пороками развития;

в) отставанием в умственном развитии;

г) необычным цветом и запахом мочи.

22. Возможные формулы кариотипа при синдроме Дауна:

б) 47,ХХ, 22+;

в) 46,ХY, 14-,t (21/14);

д) 47,ХХ, 21+;

23. Более тяжелые клинические проявления имеют хромосомные болезни, обусловленные:

а) недостатком генетического материала;

б) избытком генетического материала.

24. Признаки синдрома Беквита-Видемана:

а) макроглоссия;

б) гипогликемия;

в) эпилепсия;

г) экзостозы;

д) большие рост и масса тела новорожденных.

25. Причины возникновения трисомий:

а) отставание хромосом в анафазе;

б) нерасхождение хромосом;

в) точечные мутации.

26. Возможные формулы кариотипа при симптомокомплексе, включающем низкий рост, короткую шею, бочкообразную грудную клетку, задержку полового развития:

в) 46,ХХ/45,Х;

27. Исследование кариотипа показано:

а) у женщины с 1 спонтанным абортом в анамнезе;

б) у родителей ребенка с простой формой трисомии 21;

в) у супружеской пары с мертворождением и 3 спонтанными абортами в анамнезе.

28. Носители робертсоновских транслокаций:

а) клинически здоровы;

б) имеют кариотип, состоящий из 45 хромосом;

в) имеют риск развития опухолей;

г) имеют кариотип, состоящий из 46 хромосом, одна из которых является результатом слияния длинных плеч акроцентрических хромосом, а другая - коротких;

д) имеют риск рождения ребенка с хромосомной болезнью.

29. Выберите термин, соответствующий описанной ситуации:

а) премутация;

б) геномный импринтинг;

в) однородительская дисомия.

1) У 7-летнего мальчика с умственной отсталостью, низким ростом, маленькими кистями и стопами, полифагией (синдром Прадера-Вилли) при молекулярно-генетическом исследовании обнаружили 2 материнские хромосомы 15 и ни одной отцовской.

2) При цитогенетическом обследовании 6-летней девочки с тяжелой умственной отсталостью, судорогами, атаксией, прогенией (синдром Ангельмана) обнаружили интерстициальную микроделецию материнской хромосомы 15.

УЗИ плода на выявление генетических патологий - это выявление трисомий (дополнительной третьей хромосомы в генетическом наборе плода), приводящих к рождению малыша с серьёзными наследственными заболеваниями и физическими уродствами. Обнаружить пороки плода на УЗИ можно уже на первых этапах развития беременности.

Консультация врача по результатам анализов или УЗИ - 500 руб. (по желанию пациента)

Зачем нужно делать УЗИ для выявления пороков развития плода

На 1000 новорождённых приходится 5-7 младенцев с аномалиями половых (наследственных) или соматических (ненаследственных) клеток. Чаще всего эмбрион с хромосомным нарушением погибает на начальных сроках беременности, когда у женщины возникает . С помощью УЗИ можно увидеть различные аномалии и патологии, поэтому ультразвуковое исследование на выявление пороков развития обязательно для каждой беременной женщины.

Когда и почему возникают генетические патологии плода: риски по возрастам

Аномалии развития плода закладываются уже в момент оплодотворения сперматозоидом яйцеклетки. Например, такая патология, как триплоидия (наличие трех хромосомом в ряду цепочки, а не двух, как положено), возникает в случае проникновения в яйцеклетку двух сперматозоидов, каждый из которых оставляет по одной хромосоме. Естественно, с таким набором живой организм не может выжить, поэтому на определённом этапе происходит выкидыш или .

Самопроизвольные выкидыши случаются в 50% аномальных оплодотворений. Так природа защищает человечество от полного вырождения.

В целом хромосомные патологии разделяются на 4 группы:

  1. Гаметопатия. Патология имеется ещё до зачатия в самом сперматозоиде или яйцеклетке, т.е. это генетическое заболевание - врожденная патология.
  2. Бластопатия . Аномалии возникают в первую неделю развития зиготы.
  3. Эмбриопатия . Повреждения эмбрион получает в период от 14 до 75 дней после зачатия.
  4. Фетопатия . Заключается в формировании патологии развития плода начиная с 75 дня после оплодотворения.

Никто не застрахован от рождения малыша с генетическими отклонениями. Если раньше к группе риска относили матерей старше 35 лет, диабетиков, женщин, имеющих хронические заболевания (почечная недостаточность, проблемы с щитовидкой), то в наши дни больные дети рождаются у молодых матерей в возрасте от 20 до 30 лет.

Данные статистики наводит на мрачные мысли. Так, риск рождения малыша с хромосомными аномалиями у 20-летних женщин составляет 1:1667, а у 35-летних уже 1:192. А на деле это означает, что в 99,5% случаев ребёнок у тридцатипятилетней матери родится здоровым.

Какие генетические заболевания плода можно увидеть на УЗИ, когда проходить

Нельзя говорить, что УЗИ показывает 100% всех отклонений, но с большой долей вероятности женщина будет знать о состоянии здоровья своего будущего малыша. За всю беременность женщина проходит минимум три УЗИ исследования: в 1, 2 и 3 семестрах. Их называют .

В 1 семестре на сроке от 10 до 14 недель (до 10 недели УЗИ неинформативно) беременная проходит исследование, именуемое скринингом. Он состоит из биохимического анализа крови и УЗИ исследования эмбриона. Результатом скрининга является выявление следующих патологий:

  • синдром Дауна
  • синдром Патау
  • синдром Эдвардса
  • синдром Шерешевского-Тернера
  • синдром Карнелии де Ланге
  • синдром Смита-Лемли-Опитца
  • синдром Прадера-Вилли
  • синдром Энжельмена
  • синдром Лангера-Гидеона
  • синдром Миллера-Диккера
  • аномалия ДиДжорджи
  • синдром Уильямса
  • опухоль Вильмса
  • триплоидия (когда хромосом не 46 по2 в каждой паре, а 69, т.е. по три, а не по две)
  • дефект нервной трубки

На 20-24 неделе делается ещё одно УЗИ. Среди генетических заболеваний плода, видимых на ультразвуковом исследовании во 2 семестре, можно отметить:

  • анэнцефалия (отсутствие головного мозга, точность диагностики 100%)
  • патология брюшной стенки (86%)
  • патология развития конечностей (90%)
  • грыжа спинного мозга (87%)
  • патология развития или отсутствие почек (85%)
  • наличие отверстия в диафрагме, которая разделяет брюшную полость и грудную клетку (85%)
  • (100%)
  • аномалии сердца (48%)

На 3 семестре проводится допплерометрия – УЗИ исследование с определением сосудистой системы плода, плаценты и матери. Начиная с 23 недели беременности проверяются артерия пуповины, маточная артерия и средняя мозговая артерия. Исследуется систолический (при сокращении сердечной мышцы) и диастолический (при расслаблении сердечной мышцы) кровоток. У малыша с хромосомными нарушениями кровоток атипичен.

Также в 3 семестре обязательно делают - измерение размеров с целью выявления аномалий развития.


Разновидности УЗИ исследований

Ультразвуковая диагностика представляет широкий спектр исследований. Существует несколько видов УЗИ, которые с предельной точностью определяют внутриутробные пороки развития малыша.

Стандартное УЗИ . Оно обычно совмещено с биохимическим анализом крови. Оно проводиться не раньше 10 недель беременности. В первую очередь у плода выявляют толщину воротниковой зоны, которая не должна превышать 3 мм, а также визуализацию носовой кости. У малыша с синдромом Дауна воротниковая зона толще нормы, а носовые кости не развиты. Также на увеличение толщины влияют следующие факторы:

  • порок сердца
  • застой крови в шейных венах
  • нарушение лимфодренажа
  • анемия
  • внутриутробные инфекции

Допплерометрия - э то необычное УЗИ исследование, которое оценивает кровоток плода. Разница между посылаемым и отражаемым сигналом указывает на норму или патологию цепочки “плод-плацента-мать”.

  1. позволяет увидеть цветное изображение малыша, разглядеть конечности, отсутствие сросшихся пальчиков, недоразвитых стоп и пр. Точность диагностики воротникового пространства увеличивается на 30%. Врач может точно сказать, имеются ли патологии развития нервной трубки.
  2. по принципу работы не отличается от более простых вариантов, но обладает массой преимуществ. Врач видит трёхмерное изображение сердца, вид плода с разных ракурсов. Именно 4D диагностика окончательно расставляет все точки над “i”, есть ли хромосомные аномалии или их нет. Со 100% точностью можно утверждать, имеются ли пороки развития нервной системы, скелетная дисплазия, заячья губа или волчья пасть.

Как выглядит УЗИ общих патологий плода: фото и расшифровка результатов УЗИ

Генетические патологии бывают как специфические (синдром Дауна, опухоль Вильмса), так и общие, когда внутренний орган развивается неправильно. Для выявления общих аномалий существует анатомическое исследование плода. Оно проводится на 2 семестре начиная с 20 недели беременности. В этот период можно увидеть личико малыша и определить его пол.

При анатомическом УЗИ все органы плода выводятся на экран в разрезе, и на снимке кости будут иметь белый цвет, а мягкие ткани различные оттенки серого. Специалисту хорошо видно строение головного мозга, он также в состоянии увидеть аномалии в развитии. Становится заметной расщепление верхнего нёба, именуемая заячьей губой.

Продольная и поперечная проекция позвоночника подтверждает или опровергает правильное расположение костей, можно убедиться в целостности брюшной стенки. Отсутствие патологий сердца подтверждают одинаковые размеры предсердий и желудочков. О нормальной работе желудка говорит его наполненность околоплодными водами. Почки должны располагаться на своём месте, а моча из них свободно поступать в мочевой пузырь. Врач чётко видит конечности плода, кроме пальчиков ног.

Генетические патологии плода: как они выглядят на УЗИ и прогноз патологии

Патология

Как и когда выявляют

В чём суть патологии

Характерные черты

Психическое и интеллектуальное развитие

Синдром Дауна

Проводится биопсия хориона, увеличенное воротниковое пространство у плода, недоразвитость костей носа, увеличенный

мочевой пузырь, тахикардия у плода

Хромосомы 21-й пары вместо положенных 2 представлены 3 в цепочке

Раскосый монголоидный разрез глаз независимо от расы ребёнка, неразвитая переносица, неглубоко посаженные глаза, полукруглое плоское ухо, укороченный череп, плоский затылок, укороченный нос

Задержка интеллектуального развития, маленький словарный запас, отсутствует абстрактное мышление, нет концентрации внимания, гиперактивность

ПРОГНОЗ

Доживают до 60 лет, в редкий случаях при условии постоянных занятий с ребёнком возможна его социализация. Такой ребёнок нуждается в постоянном присмотре

Синдром Патау

Маленькая голова на 12 неделе на УЗИ, несимметричные полушарии, лишние пальцы

В 13-й хромосоме присутствует трисомия

Дети рождаются с микроцефалией (неразвитость головного мозга), низкий лоб, скошенные глазные щели, расщелины губы и нёба, помутнение роговицы, дефекты сердца, увеличены почки, аномальные половые органы

Глубокая умственная отсталость, отсутствие мышления и речи

ПРОГНОЗ

95% детей с синдромом Патау умирает до года, остальные редко доживают до 3-5 лет

Синдром Эдвардса

Биопсия хориона, внутриутробное взятие крови из пуповины, на УЗИ видна микроцефалия

В 18-й хромосом есть трисомия

Рождаются в основном девочки (3/4), а плод мужского пола погибает ещё в утробе. Низкий скошенный лоб, маленький рот, недоразвитость глазного яблока, расщелины верхней губы и нёба, узкий слуховой проход, врождённые вывихи, косолапость, тяжёлые аномалии сердца и ЖКТ, недоразвитость мозга

Дети страдают олигофренией (органическим поражением головного мозга), умственной отсталостью, имбецильностью (средней умственной отсталостью), идиотией (отсутствием речи и умственной деятельности)

ПРОГНОЗ

В течение первого года жизни умирает 90% больных детей, до 10 лет – менее 1%

Синдром Шерешевского-Тёрнера

Рентген костных структур плода, МРТ миокарда

Аномалия, встречающаяся в Х-хромосоме

Встречается чаще у девочек. Укороченная шея со складками, отёчны кисти и ступни, тугоухость. Отвисшая нижняя губа, низкая линия роста волос, недоразвитая нижняя челюсть. Рост во взрослом возрасте не превышает 145 см. Дисплазия суставов. Аномальное развитие зубов. Половой инфантилизм (нет фолликул в яичниках), недоразвитость молочных желез

Страдает речь, внимание. Интеллектуальные способности не нарушены

ПРОГНОЗ

Лечение проводится анаболическими стероидами, девушкам с 14 лет назначают женские гормональные препараты. В некоторых случаях удаётся победить недуг, и женщина может забеременеть методом ЭКО. Большинство больных остаются бесплодными

Полисомия по Х-хромосоме

Скрининг на 12 неделе беременности, биопсия хориона, анализ амниотической жидкости. Настораживает увеличение воротниковой зоны

Вместо двух Х-хромосом встречается три и более

Встречается у девочек и редко у мальчиков. Характерен половой инфантилизм (не развиваются вторичные половые признаки), высокий рост, искривление позвоночника, гиперпигментация кожи

Антисоциальное поведение, агрессия, умственная отсталость у мужчин.

ПРОГНОЗ

При постоянных занятиях с педагогами и вовлечении в трудовую деятельность возможна социализация ребёнка

Полисомия по Y-хромосоме

Вместо ХY-хромосом есть лишняя Y-хромосома

Встречается у мальчиков. Вырастают высокого роста от 186 см, тяжёлая массивная нижняя челюсть, выпуклые надбровные дуги, узкие плечи, широкий таз, сутулость, жир на животе

Умственная отсталость, агрессия, эмоциональная неустойчивость

ПРОГНОЗ

С ребёнком нужно заниматься, направлять его на мирную деятельность, привлечь к спорту

Синдром Карнелии де Ланге

При анализе крови беременной женщины в сыворотке не обнаружено протеина-А плазмы (РАРР-А), которого обычно много

мутациями в гене NIPBL или SMC1A

Тонкие сросшиеся брови, укороченный череп, высокое нёбо, аномально прорезавшиеся зубы, недоразвитые конечности, мраморная кожа, врождённые пороки внутренних органов, отставание в росте

Глубокая умственная отсталость,

ПРОГНОЗ

Средняя продолжительность жизни 12-13 лет

Синдром Смита-Лемли-Опитца

УЗИ показывает аномалии черепа у плода, не просматриваются рёберные кости

мутация в гене DHCR7, отвечающий за выработку холестерина

Узкий лоб, опущены веки, косоглазие, деформация черепа, короткий нос, низко расположенные уши, недоразвитые челюсти, аномалии половых органов, сращение пальцев

Повышенная возбудимость, агрессия, понижение мышечного тонуса, нарушения сна, отставание в умственном развитии, аутизм

ПРОГНОЗ

Терапия с использованием пищевого холестерина

Синдром Прадера-Вилли

Отмечается низкая подвижность плода, неправильное положение,

В 15-й хромосоме отсутствует отцовская часть хромосомы

Ожирение при низком росте, плохая координация, слабый мышечный тонус, косоглазие, густая слюна, плохие зубы, бесплодие

Задержка психического развития, речевое отставание, отсутствие навыков общения, слабая мелкая моторика. Половина больных имеет средний уровень интеллекта, умеют читать

ПРОГНОЗ

При постоянных занятиях ребёнок может научиться читать, считать,запоминает людей. Следует вести борьбу с перееданием

Синдром Ангельмана

Начиная с 12-й недели наблюдается отставание развития плода в росте и массе

Отсутствуют или мутирует ген UBE3A в 15-й хромосоме

Частый необоснованный смех, мелкий тремор, много ненужных движений, широкий рот, язык вываливается наружу, ходьба на абсолютно прямых ногах

“Синдром счастливой марионетки”: ребёнок часто и беспричинно смеётся. Задержка психического развития, гиперактивность, нарушение координации движения, хаотичное махание руками

ПРОГНОЗ

Проводится противоэпилептическая терапия, гипотонус мышц снижается массажем, в лучшем случае ребёнок научится невербальным навыкам общения и самообслуживания

Синдром Лангера-Гидеона

На 4D УЗИ заметна челюстно-лицевая аномалия

трихоринофаланговый синдром, заключающийся в нарушении 8-й хромосомы

Длинный нос грушевидной формы, недоразвитость нижней челюсти, очень оттопыренные уши, неравномерность конечностей, искривление позвоночника

Задержка психического развития, умственная отсталость различной степени, отсутствие речи

ПРОГНОЗ

Плохо поддаётся коррекции, невысокая продолжительность жизни

Синдром Миллера-Диккера

На УЗИ заметно аномальное строение черепа, лицевые диспропорции

Патология в 17-й хромосоме, вызывающая разглаживание мозговых извилин. Вызывается интоксикацией плода альдегидами при злоупотреблении матерью алкоголя

Дизморфия (алкогольный синдром), пороки сердца, почек, судороги

Лиссэнцефалия (гладкость извилин больших полушарий), недоразвитость головного мозга, умственная отсталость

ПРОГНОЗ

Выживаемость до 2 лет. Дети могут научиться только улыбаться и смотреть в глаза

Аномалия ДиДжорджи

В некоторых случаях на УЗИ выявляются различные пороки органов у малыша, особенно сердца (тетрада Фалло)

Заболевание иммунной системы, нарушение участка 22-й хромосомы

Гипоплазия тимуса (недоразвитость органа, отвечающего за выработку иммунных клеток), деформация лица и черепа, порок сердца. Отсутствуют паращитовидные железы, отвечающие за обмен кальция и фосфора

Атрофия коры головного мозга и мозжечка, задержка умственного развития, сложности с моторикой и речью

ПРОГНОЗ

Лечение иммуностимуляторами,пересадка тимус, кальциевосполняемая терапия. Дети редко доживают до 10 лет, умирают от последствий иммунодефицита

Синдром Уильямса

На УЗИ видны диспропорции в развитии скелета, эластичность суставов

Генетическое заболевание, вызванное отсутствием звена в 7-й хромосоме

Нарушен синтез белка эластина, у детей типично “лицо Эльфа”: припухшие веки, низко расположенные глаза, острый подбородок, короткий нос, широкий лоб

Повышенная чувствительность к звуку, импульсивность, навязчивая общительность, эмоциональная неустойчивость, тревожность, экспрессивная речь

ПРОГНОЗ

Речь хорошо развита, даже лучше, чем у здоровых сверстников. Выраженные музыкальные способности (абсолютный слух, музыкальная память). Сложности с решением математических задач

Синдром Беквита-Видеманна

На УЗИ заметны аномально непропорциональные конечности, превышение массы тела, патология почек

Генетическое заболевание, вызванное отсутствием звена в 11-й хромосоме

Бурный рост в раннем возрасте, аномально большие внутренние органы, склонность к раковым опухолям. У ребёнка пупочная грыжа, аномально большой язык, микроцефалия (недоразвитость мозга).

Эмоциональное и психическое развитие в некоторых случаях не отстаёт от нормы. Иногда встречается выраженная умственная отсталость

ПРОГНОЗ

Продолжительность жизни как у обычных людей, но существует склонность к раковым опухолям

Синдром Тричера Коллинза

На УЗИ видны ярко выраженная асимметрия черт лица

Генетическая мутация в 5-й хромосоме, вызывающая нарушение костных структур

У ребёнка практически нет лица, ярко выраженное физическое уродство

Абсолютно нормальное психо-эмоциональное развитие

ПРОГНОЗ

Проводятся оперативные вмешательства с целью устранения уродств

Причины патологий плода: что влияет на рождение детей с генетическими отклонениями

К фактором, способствующим рождению детей с генетическими аномалиями, относятся:

  1. Генетическая предрасположенность . Гены - это информация, закладываемая от обоих родителей. Определяются такие показатели, как рост, цвет глаз и волос. Точно также закладываются и различные отклонения, если у обоих или у одного из родителей имеется повреждённый ген. Вот почему запрещается вступать в брак близким родственникам. Ведь тогда возрастает вероятность вынашивания плода с генетической патологией. С партнером, имеющим противоположный генетический набор, больше шансов родить здорового малыша.
  2. Возраст родителей . К группе риска относятся мамы старше 35 лет и папы старше 40 лет. С возрастом снижается иммунитет, возникают хронические заболевания, и иммунная система женщины попросту “не заметит” генетически повреждённого сперматозоида. Произойдёт зачатие, и, если у молодой женщины организм сам отторгнет неполноценный плод, у возрастной мамы беременность будет проходить более спокойно.
  3. Вредные привычки мамы . Практически 90% патологических беременностей проходит при маловодии. У курящей женщины плод страдает от гипоксии, продукты распада альдегидов (спиртов) на начальных сроках беременности приводят к мутациям и отклонениям. У алкоголичек в 46% случаев дети рождаются с генетическими патологиями. Спирты также “ломают” генетические цепочки и у отцов, которые любят выпить.
  4. Инфекции . Особенно опасны такие заболевания, как грипп, краснуха, ветрянка. Наиболее уязвимым плод является до 18-й недели, пока не сформируется околоплодный пузырь. В некоторых случаях женщине предлагают сделать .
  5. Приём медикаментов . Даже обычный ромашковый чай для беременной женщины является токсичным. Любой приём лекарств должен сопровождаться консультацией врача.
  6. Эмоциональные потрясения . Они вызывают гибель нервных клеток, что неизменно сказывается на развитии плода.
  7. Плохая экология и смена климата . Забеременев во время отдыха на Таиланде, есть вероятность вместе с беременностью привезти опасную инфекцию, которая в родных краях начнет медленно развиваться, сказываясь на здоровье малыша.

Как предотвратить пороки плода и где сделать УЗИ плода в СПБ

Предотвратить большинство проблем с вынашиванием и патологиями плода, можно заранее планируя беременность. оба партнера сдают анализы, четко показывающие вероятность генетических отклонений. Также проводится спектр тестов на инфекции, способные вызвать уродства у малыша ( ) и другие исследования.

Приглашаем пройти УЗИ на патологии плода в Санкт-Петербурге в . У нас установлен новейший УЗИ аппарат с доплером. Обследование проводится в 3-Д и 4-Д фоматах. На руки выдается диск с записью.

Медицинская цитогенетика - изучение кариотипа человека в норме и при патологии. Это направление возникло в 1956 г., когда Тио и Леван усовершенствовали метод приготовления препаратов метафазных хромосом и впервые установили модальное число хромосом (2n=46) в диплоидном наборе. В 1959 г. была расшифрована хромосомная этиология ряда заболеваний - синдромов Дауна, Клайнфельтера, Шерешевского-Тернера и некоторых других синдромов аутосомных трисомий. Дальнейшее развитие медицинской цитогенетики в конце 1960-х годов было обусловлено появлением методов дифференциального окрашивания метафазных хромосом, дающих возможность идентификации хромосом и их отдельных районов. Методы дифференциального окрашивания не всегда обеспечивали правильность установления точек разрывов в результате структурных перестроек хромосом. В 1976 г. Юнис разработал новые методы их изучения на стадии прометафазы, которые получили название «высокоразрешающие методы».

Использование таких методов позволило получить хромосомы с разным количеством сегментов (от 550 до 850) и дало возможность проведения идентификации нарушений с вовлечением небольших их участков (микроперестроек). С начала 1980-х гг. цитогенетика человека вступила в новый этап развития: в практику был внедрен хромосомный анализ молекулярно-цитогенетических методов, флюоресцентной гибридизации in situ (FISH - Fluorescence In Situ Hybridization). Этот метод широко используют для выявления более тонких структурных аномалий хромосом, которые неразличимы при дифференциальном окрашивании. В настоящее время применение различных методов хромосомного анализа позволяет успешно проводить пре- и постнатальную диагностику хромосомных болезней.

Хромосомные болезни - большая группа клинически многообразных состояний, характеризуемых множественными врожденными пороками развития, этиология которых связана с количественными или структурными изменениями кариотипа.

В настоящее время различают почти 1000 хромосомных аномалий, из них более 100 форм имеют клинически очерченную картину и называются синдромами; их вклад в спонтанные аборты, неонатальную смертность и заболеваемость весьма значителен. Распространенность хромосомных аномалий среди спонтанных абортов составляет в среднем 50%, среди новорожденных с грубыми множественными врожденными пороками развития - 33%, мертворожденных и перинатально умерших с врожденными пороками развития - 29%, недоношенных с врожденными пороками развития - 17%, новорожденных с врожденными пороками развития - 10%, мертворожденных и перинатально умерших - 7%, недоношенных - 2,5%, всех новорожденных - 0,7%.

Большинство хромосомных болезней являются спорадическими, возникающими заново вследствие геномной (хромосомной) мутации в гамете здорового родителя или в первых делениях зиготы, а не наследуемыми в поколениях, что связано с высокой смертностью больных в дорепродуктивном периоде.

Фенотипическую основу хромосомных болезней составляют нарушения раннего эмбрионального развития. Именно поэтому патологические изменения складываются еще в пренатальном периоде развития организма и либо обусловливают гибель эмбриона или плода, либо создают основную клиническую картину заболевания уже у новорожденного (исключение составляют аномалии полового развития, формирующиеся в основном в период полового созревания). Раннее и множественное поражение систем организма характерно для всех форм хромосомных болезней. Это черепно-лицевые дизморфии, врожденные пороки развития внутренних органов и частей тела, замедленные внутриутробный и постнатальный рост и развитие, отставание психического развития, пороки центральной нервной системы, сердечно-сосудистой, дыхательной, мочеполовой, пищеварительной и эндокринной систем, а также отклонения в гормональном, биохимическом и иммунологическом статусе. Для каждого хромосомного синдрома характерен комплекс врожденных пороков развития и аномалий развития, присущий в какой-то мере только данному типу хромосомных патологий. Клинический полиморфизм каждой хромосомной болезни в общей форме обусловлен генотипом организма и условиями среды. Вариации в проявлениях патологии могут быть очень широкими - от летального эффекта до незначительных отклонений в развитии. Несмотря на хорошую изученность клинических проявлений и цитогенетики хромосомных болезней, их патогенез даже в общих чертах еще не ясен. Не разработана общая схема развития сложных патологических процессов, обусловленных хромосомными аномалиями и приводящих к появлению сложнейших фенотипов хромосомных болезней.

Основные типы хромосомных аномалий
Все хромосомные болезни по типу мутаций можно разделить на две большие группы: вызванные изменением числа хромосом при сохранении структуры последних (геномные мутации) и обусловленные изменением структуры хромосомы (хромосомные мутации). Геномные мутации возникают вследствие нерасхождения или утраты хромо-сом в гаметогенезе или на ранних стадиях эмбриогенеза. У человека обнаружено только три типа геномных мутаций: тетраплоидия, триплоидия и анеуплоидия. Частота возникновения триплоидных (Зn=69) и тетраплоидных (4n=92) мутаций очень низка, в основном их обнаруживают среди спонтанно абортированных эмбрионов или плодов и у мертворожденных. Продолжительность жизни новорожденных с такими нарушениями - несколько дней. Геномные мутации по отдельным хромосомам многочисленны, они составляют основную массу хромосомных болезней. При этом из всех вариантов анеуплоидий встречаются только трисомии по аутосомам, полисомии по половым хромосомам (три-, тетра- и пентасомии), а из моносомий встречается только моносомия X.

Полные трисомии или моносомии переносятся организмом тяжелее, чем частичные, дисбаланс по крупным хромосомам встречается у живорожденных значительно реже, чем по мелким. Полные формы хромосомных аномалий вызывают значительно более серьезные отклонения, чем мозаичные. Аутосомные моносомии среди живорожденных очень редки, это мозаичные формы с большой долей нормальных клеток. Доказан факт относительно малой генетической ценности гетерохроматиновых районов хромосом. Именно поэтому полные трисомии у живорожденных наблюдают по тем аутосомам, которые богаты гетерохроматином, - 8, 9, 13, 14, 18, 21, 22 и X. Этим объясняется хорошая переносимость пациентами даже тройной дозы материала Y-хромосомы и почти полная утрата длинного ее плеча. Совместимую с постнатальной жизнью полную моносомию по Х-хромосоме, приводящую к развитию синдрома Шерешевского-Тернера, а также тетра- и пентасомии наблюдают только по Х-хромосоме, которая гетерохроматизирована.

Хромосомные мутации, или структурные хромосомные перестройки, - нарушения кариотипа, сопровождаемые или не сопровождаемые дисбалансом генетического материала в пределах одной или нескольких хромосом (внутри- и межхромосомные перестройки).

В подавляющем большинстве случаев структурные хромосомные мутации пере-дает потомству один из родителей, в кариотипе которого присутствует сбалансированная хромосомная перестройка. К ним относят реципрокную (взаимную) сбалансированную транслокацию без потери участков вовлеченных в нее хромосом. Она, как и инверсия, не вызывает патологических явлений у носителя. Однако при образовании гамету носителей сбалансированных транслокаций и инверсий могут образовываться несбалансированные гаметы. Робертсоновская транслокация - транслокация между двумя акроцентрическими хромосомами с потерей их коротких плеч - приводит к образованию одной метацентрической хромосомы вместо двух акроцентрических. Носители такой транслокации здоровы, потому что потеря коротких плеч двух акроцентрических хромосом компенсируется работой таких же генов в остальных 8 акроцентрических хромосомах. При созревании половых клеток случайное распределение (при клеточных делениях) двух перестроенных хромосом и их гомологов приводит к появлению нескольких типов гамет, одни из которых нормальны, другие содержат такую комбинацию хромосом, которая при оплодотворении дает зиготу со сбалансированным перестроенным кариотипом, третьи дают при оплодотворении хромосомно несбалансированные зиготы.

При несбалансированном хромосомном наборе (делеции, дупликации, инсерции) у плода развиваются тяжелые клинические патологии, как правило, в виде комплекса врожденных пороков развития. Недостаток генетического материала вызывает более серьезные пороки развития, чем его избыток.

Значительно реже структурные аберрации возникают de novo. Родители пациента с хромосомной болезнью обычно кариотипически нормальны. Хромосомная болезнь в этих случаях возникает de novo в результате передачи от одного из родителей геномной или хромосомной мутации, возникшей однократно в одной из гамет, или такая мутация возникает уже в зиготе. Это не исключает повторного возникновения хромосомного нарушения у детей в данной семье. Есть семьи, предрасположенные к повторным случаям нерасхождения хромосом. Мутациями, возникшими de novo, являются почти все случаи известных полных трисомий и моносомий. Основной механизм возникновения структурной перестройки любого типа - разрыв в одной или нескольких хромосомах с последующим воссоединением образовавшихся фрагментов.

Клинические показания к цитогенетической диагностике
Цитогенетический метод исследования занимает ведущее место среди методов лабораторной диагностики при медико-генетическом консультировании и в пре-натальной диагностике. Однако следует строго придерживаться объективных
показаний для направления пациентов на исследование кариотипа.

Основные показания к пренатальной диагностике:
хромосомная аномалия у предыдущего ребенка в семье;
мертворожденный ребенок с хромосомной аномалией;
хромосомные перестройки, хромосомный мозаицизм или анеуплоидия по половым хромосомам у родителей;
результаты исследования сыворотки крови у матери, указывающие на повы-шенный риск хромосомной аномалии у плода (группа риска);
возраст матери;
выявленные при ультразвуковом исследовании аномалии плода;
подозрение на мозаицизм у плода при предыдущем цитогенетическом исследовании;
подозрение на синдром с хромосомной нестабильностью.

Исследование кариотипа при постнатальной диагностике рекомендуют проводить при наличии у пациента:
первичной или вторичной аменореи или ранней менопаузы;
аномальной спермограммы - азооспермии или выраженной олигоспермии;
клинически выраженных отклонений в росте (низкий, высокий рост) и размерах головы (микро-, макроцефалия);
аномальных гениталий;
аномального фенотипа или дизморфий;
врожденных пороков развития;
умственной отсталости или нарушений развития;
проявлений делеционного/микроделеционного/дупликационного синдрома;
Х-сцепленного рецессивного заболевания у женщин;
клинических проявлений синдромов хромосомной нестабильности;
при мониторинге после трансплантации костного мозга.

Цитогенетические исследования следует провести у супружеской пары:
при хромосомных аномалиях или необычных вариантах хромосом у плода, обнаруженных при пренатальной диагностике;
повторных выкидышах (3 и более); мертворождении, неонатальной смерти плода, невозможности обследования пораженного плода;
наличии у ребенка хромосомной аномалии или необычного хромосомного варианта;
бесплодии неизвестной этиологии.

Показанием к цитогенетическому исследованию является наличие у родственников пациента:
хромосомных перестроек;
умственной отсталости предположительно хромосомного происхождения;
репродуктивных потерь, врожденных пороков развития плода или мертворождения неясного происхождения.

Показания к исследованию FISH-методом:
подозрение на микроделеционный синдром, для которого доступна молекулярно-цитогенетическая диагностика (наличие соответствующих ДНК-зондов);
повышенный риск микроделеционного синдрома по анамнестическим данным;
клинические признаки, позволяющие предположить мозаицизм по опреде-ленному хромосомному синдрому;
состояния после трансплантации костного мозга, когда донор и реципиент разного пола;
подозрение на хромосомную аномалию при стандартном цитогенетическом исследовании, когда FISH-метод может быть полезным для дальнейшего 
уточнения характера аномалии, или в ситуациях, когда имеются характерные клинические проявления;
наличие сверхчисленной маркерной хромосомы;
подозрение на скрытую хромосомную перестройку.

FISH-метод при анализе метафаз показан:
при маркерных хромосомах;
дополнительном материале неизвестного происхождения на хромосоме;
хромосомных перестройках;
подозрении на потерю хромосомного сегмента;
мозаицизме.

FISH-метод при анализе интерфазных ядер показан:
при численных хромосомных аномалиях;
дупликациях;
делениях;
перестройках хромосом;
определении хромосомного пола;
амплификации генов.

Методы цитогенетического исследования :
Исследование и описание характерных особенностей метафазных хромосом особенно важны для практической цитогенетики. Отдельные хромосомы в пределах группы распознают с помощью методов дифференциального окрашивания. Эти методы позволяют обнаруживать неоднородность структуры хромосомы по длине, определяемую особенностями комплекса основных молекулярных компонентов хромосом - ДНК и белков. Проблема распознавания индивидуальных хромосом в кариотипе важна для развития цитогенетической диагностики хромосомных болезней у человека.

Методы цитогенетического исследования делятся на прямые и непрямые. Прямые методы применяют в тех случаях, когда нужен быстрый результат и имеется возможность получить препараты хромосом клеток, делящихся в организме. Непрямые методы включают в качестве обязательного этапа более или менее длительное культивирование клеток в искусственных питательных средах. Промежуточное положение занимают методы, включающие кратковременное культивирование (от нескольких часов до 2-3 сут).

Основной объект цитогенетического исследования прямыми и непрямыми методами - стадия метафазы митоза и различные стадии мейоза. Метафаза мито¬за служит основным предметом цитогенетического исследования, так как именно на этой стадии возможны точная идентификация хромосом и выявление их ано¬малий. Хромосомы в мейозе исследуют для обнаружения некоторых типов пере¬строек, по природе своей не обнаруживаемых в метафазе митоза.

Биологический материал для цитогенетических исследований. Обработка клеточных культур. Приготовление хромосомных препаратов
В качестве материала для получения хромосом человека и их исследования могут быть использованы клетки любой ткани, доступной для биопсии. Чаще всего используют периферическую кровь, кожные фибробласты, костный мозг, клетки амниотической жидкости, ворсинчатого хориона. Наиболее доступны для исследования хромосом лимфоциты периферической крови человека.

В настоящее время практически во всех лабораториях мира для постановки культуры лимфоцитов применяют метод с использованием цельной периферической крови. Кровь в количестве 1-2 мл заранее берут из локтевой вены в стерильную пробирку или флакон с раствором гепарина. Во флаконе кровь можно хранить 24-48 ч в холодильнике при температуре 4-6 °С. Постановку культуры лимфоцитов осуществляют в специальном боксовом помещении или в рабочей комнате под ламинарным шкафом в стерильных условиях. Такие условия обязательны для предотвращения заноса в культуру крови патогенной флоры. Если есть подозрение на загрязненность крови или другого материала, необходимо в культуральную смесь добавить антибиотики. Флаконы с культуральной смесью инкубируют в термостате при температуре +37 °С в течение 72 ч (идет активный рост и деление клеток). Основное назначение методических приемов при обработке клеточных культур и приготовлении из них хромосомных препаратов - получить на препарате достаточное количество метафазных пластинок с таким разбросом хромосом, при котором можно оценить длину, форму и другие морфологические признаки каждой хромосомы набора.

Накопление клеток в метафазе митоза и получение на препарате качественных пластинок происходит с помощью ряда последовательных процедур:
колхинизации - воздействия на клетки цитостатиками колхицином или колцемидом, блокирующими митоз в стадии метафазы;
гипотонизации культур;
фиксации клеток смесью метилового спирта с уксусной кислотой;
нанесения клеточной взвеси на предметное стекло.

Колхинизацию культур клеток осуществляют за 1,5-2 ч до начала фиксации. После введения колхицина флаконы с клеточными культурами продолжают инкубировать в термостате. По окончании инкубации культуральную смесь из каждого флакона сливают в чистые центрифужные пробирки и подвергают центрифугиро-ванию. Затем к осадку клеток добавляют гипотонический раствор калия хлорида, предварительно нагретый до температуры +37 °С.

Гипотонизацию проводят в термостате при температуре +37 °С в течение 15 мин. Гипотонический раствор KCI способствует лучшему разбросу хромосом на предметном стекле. После гипотонизации клетки переводят в осадок центрифуги-рованием и подвергают фиксации. Фиксацию проводят смесью метилового (или этилового) спирта с уксусной кислотой.

Завершающий этап - приготовление хромосомных препаратов для получения хорошо «распластанных» метафазных пластинок с сохранением целостности, полноты хромосомного набора в каждой из них. На мокрые, охлажденные пред-метные стекла наносят клеточную взвесь, после чего стекла высушивают при ком-натной температуре и маркируют.

Методы дифференциального окрашивания хромосом
С 1971 г. в цитогенетике нашли широкое распространение методы, позволяющие дифференциально окрашивать каждую хромосому набора по ее длине. Практическое значение этих методов состоит в том, что дифференциальная окраска позволяет идентифицировать все хромосомы человека благодаря специфическому рисунку продольной окрашиваемости для каждой хромосомы. Для окраски может быть пригодна любая краска, состоящая из основного красителя, поскольку главным красящим субстратом хромосом является комплекс ДНК с белками. В практике цитогенетических исследований наибольшее применение получили следующие методы.

G-метод окраски - самый распространенный метод из-за простоты, надежности и доступности необходимых реактивов. После окраски каждая пара хромосом приобретает исчерченность по длине благодаря чередованию по-разному окрашенных гетерохроматиновых (темных) и эухроматиновых (светлых) сегментов, которые принято обозначать как G-сегменты. С-метод окраски обеспечивает выявление лишь некоторых районов хромосом. Это районы гетерохроматина, локализованного в околоцентромерных участках длинных плеч хромосом 1, 9 и 16 и в длинном плече Y-хромосомы, а также в коротких плечах акроцентрических хромосом. R-метод окраски препаратов хромосом показывает картину дифференциальной сегментации, обратной G-методу. Этим методом хорошо прокрашиваются дистальные сегменты хромосом, что очень важно при идентификации мелких пере-строек с вовлечением концевых участков. Q-метод окраски обеспечивает дифференциальную флюоресцентную окраску индивидуальных хромосом набора, позволяет идентифицировать каждую пару гомологов, а также определить наличие Y-хромосомы в интерфазных ядрах по свечению тельца Y-хроматина.

Принципы хромосомного анализа
Обязательным этапом исследования является визуальный анализ хромосом под микроскопом с использованием тысячекратного увеличения (х1000) при окулярах х10 и иммерсионном объективе х100. Оценку качества и пригодности хромосомных препаратов для исследования, а также отбор метафазных пластинок для анализа проводят при малом увеличении (х100). Для исследования выбирают хорошо окрашенные, полные метафазные пластинки с хорошим разбросом хромосом. Исследователь подсчитывает общее количество хромосом и проводит оценку структуры каждой хромосомы путем сопоставления исчерченности гомологов, а также сопоставления наблюдаемой картины с цитогенетическими картами (схемами) хромосом.

Использование компьютерных систем анализа изображений существенно облегчает задачу цитогенетика, повышает качество его работы и предоставляет возможность быстрого и простого документирования результатов исследования. Для обеспечения высокого качества работы рекомендуют участие двух специалистов в проведении цитогенетического исследования каждого образца. Документом, подтверждающим исследование, служит протокол, в котором указывают координаты просмотренных клеток, количество хромосом в каждой из них, обнаруженные перестройки, формулу кариотипа и заключение, а также фамилию пациента, дату и номер исследования, фамилию и подпись врача (врачей), проводившего исследование. Следует сохранять препараты и изображения хромосом для последующего просмотра.

ОСНОВНЫЕ ПРАВИЛА ОПИСАНИЯ ХРОМОСОМНЫХ АНОМАЛИЙ СОГЛАСНО МЕЖДУНАРОДНОЙ СИСТЕМЕ ЦИТОГЕНЕТИЧЕСКОЙ НОМЕНКЛАТУРЫ
Запись формулы кариотипа необходимо проводить в соответствии с действую-щей версией Международной системы цитогенетической номенклатуры человека - International System for human Cytogenetic Nomenclature. Ниже рассмотрены аспекты применения номенклатуры, которые наиболее часто встречаются в клинической цитогенетической практике.

Количество и морфология хромосом:
В кариотипе хромосомы разделяют на семь легкоразличимых групп (А-G) в соответствии с их размером и положением центромеры. Аутосомы - это хромосо¬мы с 1-й по 22-ю, половые хромосомы - X и Y.
Группа А (1-3) - большие метацентрические хромосомы, которые можно отличить друг от друга по размеру и положению центромеры.
Группа В (4-5) - большие субметацентрические хромосомы.
Группа С (6-12, X) - метацентрические и субметацентрические хромосомы среднего размера. Х-хромосому относят к самым крупным хромосомам в этой группе.
Группа D (13-15) - акроцентрические хромосомы среднего размера со спутниками. 
Группа Е (16-18) - относительно небольшие метацентрические и субметацентрические хромосомы.
Группа F (19-20) - маленькие метацентрические хромосомы.
Группа G (21-22, Y) - маленькие акроцентрические хромосомы со спутниками. Y-хромосома не имеет спутников.

Каждая хромосома состоит из непрерывного ряда полос, которые размещаются по длине плеч хромосом в строго ограниченных районах (участках). Хромосомные районы специфичны для каждой хромосомы и имеют существенное значение для их идентификации. Полосы и районы нумеруют в направлении от центромеры к теломере по длине каждого плеча. Районы - участки хромосомы, расположенные между двумя соседними полосами. Для обозначения коротких и длинных плеч хромосом используют следующие символы: р - короткое плечо и q - длинное плечо. Центромера (сеп) обозначена символом 10, часть центромеры, прилежащая к короткому плечу, - р10, к длинному плечу - q10. Район, ближайший к центромере, обозначают цифрой 1, следующий район - цифрой 2 и т. д.

Для обозначения хромосом используют четырехзначную символику:
1-й символ - номер хромосомы;
2-й символ (р или q) - плечо хромосомы;
3-й символ - номер района (участка);
4-й символ - номер полосы в пределах этого района.

Например, запись 1р31 указывает на хромосому 1, ее короткое плечо, район 3, полосу 1. Если полоса подразделяется на субполосы, после обозначения полосы ставят точку, затем пишут номер каждой субполосы. Субполосы, так же как и полосы, нумеруют в направлении от центромеры к теломере. Например, в полосе 1р31 выделяют три субполосы: 1р31.1, 1р31.2 и 1р31.3, из которых субполоса 1р31.1 проксимальна по отношению к центромере, а субполоса 1р31.3 - дистальна. Если субполосы подразделяют дополнительно на части, их нумеруют цифрами без пунктуации. Например, субполоса 1р31.1 делится на 1р31.11,1р31.12 и т. д.

ОБЩИЕ ПРИНЦИПЫ ОПИСАНИЯ НОРМАЛЬНОГО И АНОМАЛЬНОГО КАРИОТИПА
В описании кариотипа первым пунктом указывают общее количество хромосом, включая половые хромосомы. Первое число отделяют от остальной части записи запятой, затем записывают половые хромосомы. Аутосомы обозначают только в случае аномалий.

Нормальный человеческий кариотип выглядит следующим образом:
46,XX - нормальный кариотип женщины;
46,XY - нормальный кариотип мужчины. 

При хромосомных аномалиях первыми записывают аномалии половых хромо-сом, затем аномалии аутосом в порядке возрастания номеров и независимо от типа аномалии. Каждую аномалию отделяют запятой. Для описания структурно перестроенных хромосом используют буквенные обозначения. Хромосому, вовлеченную в перестройку, записывают в круглых скобках после символа, обозначающего тип перестройки, например: inv(2), del(4), r(18). Если в перестройке участвуют две или более хромосом, между обозначениями номера каждой из них ставят точку с запятой (;).

Знаки (+) или (-) ставят перед хромосомой для обозначения аномалии с указанием дополнительной или отсутствующей хромосомы (нормальной или аномальной), например: +21,-7,+der(2). Их также используют для обозначения уменьшения или увеличения длины плеча хромосомы после символа (р или q); с этой целью указанные выше знаки можно применять только в тексте, но не в описании кариотипа, например: 4р+, 5q-. При описании размеров гетерохроматиновых сегментов, спутников и спутнич- ных нитей знак (+) (увеличение) или (-) (уменьшение) ставят непосредственно за обозначением соответствующего символа, например: 16qh+, 21ps+, 22pstk+. Знак умножения (х) используют для описания множественных копий перестроенных хромосом, но его нельзя использовать для описания множественных копий нормальных хромосом, например: 46,XX,del(6)(q13q23)х2. Для указания альтернативных интерпретаций аномалий используют символ (оr), например: 46,XX,del(8)(q21.1) or i(8)(p10).

Кариотипы разных клонов разделяют косой чертой (/). Квадратные скобки ставят после описания кариотипа, для обозначения абсолютного количества клеток в данном клоне. Для того чтобы указать причину возникновения разных клонов, используют символы mos (мозаицизм - клеточные линии произошли из одной зиготы) и chi (химера - клеточные линии произошли из разных зигот), которые приводят перед описанием кариотипа. При перечислении кариотипов нормальный диплоидный клон всегда указывают последним, например: mos47,XY,+21/46,XY; mos47,XXY/46,XY.

Если есть несколько аномальных клонов, запись проводят в порядке увеличе¬ния их размера: первый - наиболее часто встречаемый, затем по нисходящей. Самым последним указывают нормальный клон, например: mos45,X/47,XXX /46,ХХ. Аналогичную запись используют и в кариотипе, имеющем два нормальных клона, например: chi46,XX/46,XY. Если в кариотипе присутствуют два аномальных клона, один из которых имеет числовую аномалию, а другой - структурную перестройку, то клон с числовой аномалией записывают первым. Например: 45,X/46,X,i(X)(q10).

Когда оба клона имеют числовые аномалии, сначала записывают клон, имеющий аутосому с меньшим порядковым номером, например: 47,ХХ,+8/47,ХХ,+21; клон с аномалиями половых хромосом всегда ставят первым, например: 47,ХХХ/47,ХХ,+21 .

Тот факт, что кариотип является гаплоидным или полиплоидным, будет очеви-ден из числа хромосом и дальнейших обозначений, например: 69,XXY. Все измененные хромосомы должны быть обозначены относительно соответствующего уровня плоидности, например: 70,XXY,+21.

Материнское или отцовское происхождение аномальной хромосомы обозначают символами mat и pat соответственно после описываемой аномалии, например: 46,XX,t(5;6)(q34;q23)mat,inv(14)(q12q31)pat; 46,XX,t(5;6)(q34;q23)mat,inv(14) (q12q31)mat. Если известно, что хромосомы родителей нормальны по сравнению с данной аномалией, ее рассматривают как вновь возникшую и обозначают символом denovo (dn), например: 46,XY,t(5;6)(q34;q23)mat,inv (14)(q12q31)dn.

Описание численных аномалий хромосом:
Знак (+) или (-) ставят для обозначения потери или приобретения дополни-тельной хромосомы при описании численных аномалий.
47,XX,+21 - кариотип с трисомией 21.
48,XX,+13,+21 - кариотип с трисомией 13 и трисомией 21.
45,XX,-22 - кариотип с моносомией 22.
46,XX,+8,-21 - кариотип с трисомией 8 и моносомией 21.
Исключением из этого правила являются конституциональные аномалии поло-вых хромосом, которые записывают без использования знаков (+) и (-).
45,X - кариотип с одной Х-хромосомой (синдром Шерешевского-Тернера).
47,XXY - кариотип с двумя Х-хромосомами и одной Y-хромосомой (синдром Клайнфельтера).
47,XXX - кариотип с тремя Х-хромосомами.
47,XYY - кариотип с одной Х-хромосомой и двумя Y-хромосомами.
48,XXXY - кариотип с тремя Х-хромосомами и одной Y-хромосомой.

Описание структурных аномалий хромосом
В описании структурных перестроек используют как краткую, так и детальную системы записи. При использовании краткой системы указывают только тип хромосомной перестройки и точки разрыва. Записывают тип хромосомной аномалии, хромосому, вовлеченную в данную аномалию, и в круглых скобках - точки разры-ва. Краткая система не дает возможности однозначного описания сложных хромосомных перестроек, которые иногда выявляют при анализе кариотипов опухолей.

Краткая система обозначения структурных перестроек
Если в перестройку, возникшую в результате двух разрывов, произошедших в одной хромосоме, вовлечены оба плеча, точку разрыва в коротком плече записыва¬ют перед точкой разрыва в длинном плече: 46,XX,inv(2)(p21q31). Когда две точки разрыва находятся в одном плече хромосомы, первой указывают проксимальную к центромере точку разрыва: 46,XX,inv(2)(p13p23). В случае, когда в перестройку вовлечены две хромосомы, первой указывают либо хромосому с меньшим поряд-ковым номером, либо половую хромосому: 46,XY,t(12;16)(q13;p11.1); 46,X,t(X;18) (p11.11;q11.11).

Исключением из правила являются перестройки с тремя точками разрыва, когда фрагмент одной хромосомы вставляется в район другой хромосомы. При этом хромосому-реципиента записывают первой, а хромосому-донора последней, даже если это половая хромосома или хромосома с меньшим порядковым номером: 46,X,ins(5;X)(p14;q21q25); 46,XY,ins(5;2)(p14;q22q32). Если перестройка затрагивает одну хромосому, первыми указывают точки разрыва в сегменте, где образовалась вставка. В случае прямой инсерции первой записывают проксимальную к центромере точку разрыва вставленного фрагмента, а затем - дистальную точку разрыва. При инвертированной вставке - наоборот.

Для обозначения транслокаций, в которые вовлечены три разные хромосомы, на первом месте указывают половую хромосому или хромосому с меньшим поряд¬ковым номером, затем хромосому, получившую фрагмент от первой хромосомы, и, наконец, хромосому, отдавшую фрагмент первой хромосоме. 46,XX,t(9;22;17) (q34;q11.2;q22) - фрагмент хромосомы 9, соответствующий дистальному району 9q34, перенесен на хромосому 22, в сегмент 22q11.2, фрагмент хромосомы 22, соответствующий дистальному району 22q11.2, перенесен на хромосому 17, в сегмент 17q22, а фрагмент хромосомы 17, соответствующий дистальному району 17q22, перенесен на хромосому 9, в сегмент 9q34. 

Детальная система обозначения структурных перестроек. В соответствии с детальной системой обозначений структурные перестройки хромосом определяют по составу полос в них. Все обозначения, употребляемые в краткой системе, сохраняются и в детальной системе. Однако в детальной системе приводят подробное описание состава полос в перестроенных хромосомах с примене¬нием дополнительных символов. Двоеточие (:) обозначает точку разрыва, а двойное двоеточие (::) - разрыв с последующим воссоединением. Стрелкой (->) указывается направление переноса фрагментов хромосомы. Концы плеч хромосом обозначают символом ter (терминальный), pter или qter означают конец короткого или длинного плеча соответственно. Символ сеп используют для обозначения центромеры.

Типы хромосомных перестроек
Дополнительный материал неизвестного происхождения. Символ add (от лат. additio - прибавление) используют для указания на допол-нительный материал неизвестного происхождения, присоединившийся к хромосомному району или полосе. Дополнительный материал, присоединившийся к терминальному участку, будет вызывать увеличение длины плеча хромосомы. При описании хромосом с дополнительным материалом неизвестного проис-хождения в обоих плечах перед номером хромосомы ставят символ der. Если неизвестный дополнительный материал вставлен в плечо хромосомы, для описания используют символы ins и (?).

Делеции. Символ del используют для обозначения терминальных (концевых) и интерстициальных делеций:
46,XX,del(5)(q13)
46,XX,del (5) (pter->q13:)
Знак (:) означает, что разрыв произошел в полосе 5q13, в результате хромосома 5 состоит из короткого плеча и части длинного плеча, заключенной между центро-мерой и сегментом 5q13.
46,XX,del(5)(q13q33)
46,XX,del(5)(pter->q13::q33->qter)
Знак (::) означает разрыв и воссоединение полос 5ql3 и 5q33 длинного плеча хромосомы 5. Сегмент хромосомы между этими полосами делетирован.

Производные, или дериватные, хромосомы (der) - это хромосомы, возникшие в результате перестроек, затрагивающих две и более хромосом, а также в результате множественных перестроек внутри одной хромосомы. Номер производной хромосомы соответствует номеру интактной хромосомы, имеющей ту же центромеру, что и хромосома-дериват:
46,XY,der(9)del(9)(p12)del(9)(q31)
46,XY,der(9) (:р12->q31:)
Дериватная хромосома 9 является результатом двух терминальных делеций, произошедших в коротком и длинном плечах, с точками разрыва в полосах 9р12 и 9q31 соответственно.
46,XX,der (5)add(5)(p15.1)del(5)(q13)
46,XX,der(5)(?::p15.1-»q13:)
Дериватная хромосома 5 с дополнительным материалом неизвестного происхождения, присоединенным к полосе 5р15.1, и терминальной делецией длинного плеча дистальнее полосы 5q13.

Дицентрические хромосомы. Символ die используют для описания дицентрических хромосом. Дицентрическая хромосома заменяет одну или две нормальные хромосомы. Таким образом, нет необходимости указывать недостающие нормальные хромосомы. 
45,XX,dic(13;13)(q14;q32)
45,XX,dic(13;13)(13pter->13ql4::13q32-»13pter)
Разрыв и воссоединение произошли в полосах 13ql4 и 13q32 на двух гомологичных хромосомах 13, в результате чего образовалась дицентрическая хромосома.

Дупликации. Дупликации обозначают символом dup; они могут быть прямыми и инвертированными.
46,XX,dup(1)(q22q25)
46,XX,dup(1)(pter->q25::q22->qter)
Прямая дупликация сегмента между полосами lq22 и lq25.
46,XY,dup(1)(q25q22)
46,XY,dup(1) (pter->q25::q25->q22::q25->qter) или (pter->q22::q25-»q22::q22->qter)
Инвертированная дупликация сегмента между полосами lq22 и lq25. Необходимо отметить, что только детальная система дает возможность описать инвертированную дупликацию.

Инверсии. Символ inv используют для описания пара- и перицентрических инверсий.
46,XX,inv(3)(q21q26.2)
46,XX,inv(3)(pter->q21::q26.2->q21::q26.2->qter)
Парацентрическая инверсия, при которой разрыв и воссоединение произошли в полосах 3q21 и 3q26.2 длинного плеча хромосомы 3.
46,XY,inv(3)(p13q21)
46,XY,inv(3)(pter-»pl3::q21->p13::q21->qter)
Перицентрическая инверсия, при которой разрыв и воссоединение произошли между полосой 3р13 короткого плеча и полосой 3q21 длинного плеча хромосомы 3. Участок между этими полосами, включающий центромеру, перевернут на 180°.

Инсерции. Символ ins используют для обозначения прямой или инвертированной инсерции. Прямой считают такую инсерцию, при которой проксимальный конец района вставки оказывается в проксимальном положении относительно второго ее конца. При инвертированной инсерции проксимальный конец района вставки оказывается в дистальном положении. Тип инсерции (прямая или инвертированная) также может быть отражен символами dir и inv соответственно.
46,XX,ins(2)(pl3q21q31)
46,XX,ins(2)(pter->p13::q31->q21::pl3-»q21::q31-qter)
Прямая инсерция, т. е. dir ins(2) (p13q21q31), произошла между сегментами 2q21 и 2q31 длинного плеча и сегментом 2р13 короткого плеча хромосомы 2. Участок хромосомы длинного плеча между сегментами 2q21 и 2q31 вставлен в короткое плечо в районе сегмента 2р13. В новом положении сегмент 2q21 остается ближе к центромере, чем сегмент 2q31.
46,XY,ins(2) (pl3q31q21)
46,XY,ins(2)(pterH>pl3::q21->q31::pl3->q21::q31-»qter)
В данном случае вставленный участок инвертирован, т. е. inv ins(2)(p13q31q21). Во вставке сегмент 2q21 отстоит от центромеры дальше, чем сегмент 2q31. Таким образом, изменилось расположение сегментов по отношению к центромере.

Изохромосомы. Символ i используют при описании изохромосом, которые представляют собой хромосомы, состоящие из двух идентичных плеч. Точки разрыва в изохромосомах локализованы в центромерных районах р10 и q10.
46,XX,i(17)(q10)
46,XX,i(17)(qter-»q10::q10 ->qter) 
Изохромосома по длинному плечу хромосомы 17 и точка разрыва обозначены в районе 17q10. В кариотипе одна нормальная хромосома и одна перестроенная хромосома 17.
46,X,i(X)(q10)
46,X,i(X) (qter-»q10::q10->qter)
Одна нормальная Х-хромосома и Х-изохромосома по длинному плечу.

Ломкие участки (fragile sites, сокращенно fra) могут проявляться как нормальный полиморфизм, а могут быть связаны с наследственными заболеваниями или аномалиями фенотипа.
46,X,fra(X)(q27.3)
Ломкий участок в субполосе Xq27.3 одной из Х-хромосом в женском кариотипе.
46,Y,fra(X)(q27.3)
Ломкий участок в субполосе Xq27.3 Х-хромосомы в мужском кариотипе.

Маркерная хромосома (таг) - это структурно измененная хромосома, ни одна часть которой не может быть идентифицирована. Если какая-нибудь из частей аномальной хромосомы идентифицирована, ее описывают как производную хромосому (der). При описании кариотипа перед символом mar ставят знак (+).
47,XX,+mar
Одна дополнительная маркерная хромосома.
48,X,t(X;18)(p11.2;q11.2)+2mar
Две маркерные хромосомы в дополнение к транслокации t(X;18).

Кольцевые хромосомы обозначают символом г, они могут состоять из одной или нескольких хромосом.
46,XX,r(7)(p22q36)
46,XX,r(7) (::р22->q36::)
Разрыв и воссоединение произошли в сегментах 7р22 и 7q36 с потерей участков хромосомы, расположенных дистальнее этих точек разрыва.
Если центромера кольцевой хромосомы неизвестна, но известны сегменты хромосом, содержащихся в кольце, кольцевые хромосомы определяются как производные (der).
46,XX,der(1)r(1;3)(p36.1q23;q21q27)
46,XX,der(1)(::lp36.1->1q23::3q21->3q27::)

Транслокации. Реципрокные транслокации
Для описания транслокаций (t) используют те же принципы и правила, что и для описания других хромосомных перестроек. Для того чтобы отличить гомологичные хромосомы, один из гомологов может быть подчеркнут одинарным подчеркиванием (_).
46,XY,t(2;5)(q21;q31)
46,XY,t(2;5)(2pter2q21::5q31-> 5qter;5pter 5q31::2q21->2qter)
Разрыв и воссоединение произошли в сегментах 2q21 и 5q31. Хромосомы обме-нялись участками, дистальными по отношению к этим сегментам. Первой указывают хромосому с меньшим порядковым номером.
46,X,t(X;13)(q27;ql2)
46,X,t(X;13)(Xpter->Xq27::13ql2->13qter;13pter->3q 12::Xq27->Xqter)
Разрыв и воссоединение произошли в сегментах Xq27 и 13q12. Сегменты, дистальные по отношению к этим участкам, поменялись местами. Поскольку в транслокации участвует половая хромосома, ее записывают первой. Отметим, что правильная запись следующая - 46,X,t(X;13), а не 46,XX,t(X;13).
46,t(X;Y) (q22;q1, 1.2) 
46,t(X;Y)(Xpter->Xq22::Yq11.2->Yqter;Ypter->Yq11.2::Xq22->Xqter)
Реципрокная транслокация между X- и Y-хромосомами с точками разрыва Xq22 и Yq11.2.
Транслокации с вовлечением в них целых хромосомных плеч могут быть записаны с указанием точек разрыва в центромерных районах р10 и q10. При сбалансированных транслокациях точку разрыва в половой хромосоме или в хромосоме с меньшим порядковым номером обозначают р10.
46,XY,t(4;3)(p10;q10)
46,XY,t(1;3)(lpteMlpl0::3ql0->3qter;3pter->3p40::4q40->4qter)
Реципрокная транслокация целых хромосомных плеч, при которой короткие плечи хромосомы 1 присоединились к центромере с длинными плечами хромосомы 3, а длинные плечи хромосомы 1 присоединились к коротким плечам хромосомы 3.
При несбалансированных транслокациях целых хромосомных плеч перестроен-ная хромосома обозначается как производная (der) и замещает две нормальные хромосомы.
45,XX,der(1;3) (p10;q10)
45,XX,der(1;3)(1pter->1p10::3q10->3qter)

Производная хромосома, состоящая из короткого плеча хромосомы 1 и длинного плеча хромосомы 3. Недостающие хромосомы 1 и 3 не обозначены, так как они заменены производной хромосомой. Кариотип, таким образом, содержит одну нормальную хромосому 1, одну нормальную хромосому 3 и производную хромосому der(l;3).

Робертсоновские транслокации
Это особый тип транслокаций, возникающих в результате центрического слияния длинных плеч акроцентрических хромосом 13-15 и 21-22 с одновременной потерей коротких плеч этих хромосом. Принципы описания несбалансированных транслокаций, затрагивающих целые плечи, применимы и для описания робертсоновских транслокаций с использованием символа (der). Символ rob также может быть использован при описании этих транслокаций, но его нельзя применять в описании приобретенных аномалий. Точки разрывов хромосом, участвующих в транслокации, указывают в районах q10.
45,XX,der(13;21) (q10;q10)
45,XX,rob(13;21) (q10;q10)

Разрыв и воссоединение произошли в сегментах 13q10 и 21q10 центромерных районов хромосом 13 и 21. Производная хромосома заменила одну хромосому 13 и одну хромосому 21. Нет необходимости указывать недостающие хромосомы. Кариотип содержит одну нормальную хромосому 13, одну нормальную хромосому 21 и der (13;21). Дисбаланс возникает за счет потери коротких плеч хромосом 13 и 21.

Сложный этический вопрос, стоит ли проводить обследование для выявления генетических патологий будущего малыша, каждая беременная решает для себя сама. В любом случае, важно обладать всей информацией о современных возможностях диагностики.

О том, какие сегодня существуют инвазивные и неинвазивные методы пренатальной диагностики, насколько они информативны и безопасны и в каких случаях применяются, рассказала Юлия ШАТОХА, кандидат медицинских наук, заведующая отделением пренатальной ультразвуковой диагностики Сети медицинских центров «УЗИ студия».

Зачем нужна пренатальная диагностика?

Предсказать возможные генетические патологии на протяжении беременности помогают различные методы. Прежде всего, это ультразвуковое исследование (скрининг), с помощью которого врач может заметить отклонения в развитии плода.

Второй этап пренатального скрининга при беременности - биохимический скрининг (анализ крови). Эти анализы, также известные как «двойной» и «тройной» тесты, сегодня проходит каждая беременная. Он позволяет с некоторой степенью точности спрогнозировать риск существования хромосомных аномалий плода.

Точный диагноз на основании такого анализа поставить невозможно, для этого требуются хромосомные исследования - более сложные и дорогостоящие.

Хромосомные исследования не обязательны для всех беременных, однако существуют и определенные показания:

    будущие родители - близкие родственники;

    будущая мать старше 35 лет;

    наличие в семье детей с хромосомной патологией;

    выкидыши или замершие беременности в прошлом;

    потенциально опасные для плода заболевания, перенесенные во время беременности;

    незадолго до зачатия кто-то из родителей подвергался ионизирующему излучению (рентген, лучевая терапия);

    риски, выявленные в результате УЗИ.

Мнение специалиста

Статистическая вероятность рождения ребенка с хромосомным нарушением - от 0,4 до 0,7%. Но нужно учитывать, что это риск в популяции в целом, для отдельных беременных он может быть чрезвычайно высок: базовый риск зависит от возраста, национальности и различных социальных параметров. Например, риск хромосомных аномалий у здоровой беременной с возрастом увеличивается. Кроме того есть, а есть индивидуальный риск, который определяется на основании данных биохимического и ультразвукового исследований.

«Двойной» и «тройной» тесты

Биохимические скрининги также известные как , а в просторечье именуемые и вовсе «анализ на синдром Дауна» или «анализ на уродства» , проводят в строго определённые сроки беременности.

Двойной тест

Двойной тест делают на 10-13 неделе беременности. В ходе этого исследования крови смотрят величину таких показателей как:

    свободный ХГЧ (хорионический гонадотропин),

    РАРРА (плазменный протеин А, ингибитор А).

Анализ следует делать только после проведения УЗИ, данные которого также используют при расчете рисков.

Специалисту потребуются следующие данные из заключения УЗИ: дата проведения УЗИ, копчико-теменной размер (КТР), бипариетальный размер (БПР), толщина воротникового пространства (ТВП).

Тройной тест

Второй - «тройной» (либо «четверной») тест беременным рекомендуют проходить на 16-18 неделе.

В ходе этого теста исследуют количество следующих показателей:

    альфа-фетопротеин (АФП);

    свободный эстриол;

    ингибин А (в случае четверного теста)

На основании анализа данных первого и второго биохимического скрининга и УЗИ, врачи рассчитывают вероятность таких хромосомных аномалий как:

    синдром Дауна;

    синдром Эдвардса;

    дефекты нервной трубки;

    синдром Патау;

    синдром Тернера;

    сндром Корнелии де Ланге;

    синдром Смита Лемли Опитца;

    триплоидия.

Мнение специалиста

Двойной или тройной тест это биохимические анализы, определяющие концентрацию в крови матери определенных веществ, характеризующих состояние плода.

Как рассчитывают риски хромосомных аномалий?

На результаты биохимического скрининга, помимо возможных хромосомных патологий, влияют очень многие факторы, в особенности возраст и вес. Чтобы определить статистически достоверные результаты, была создана база данных, в которой женщин разделили на группы по возрасту и массе тела и посчитали усредненные показатели «двойного» и «тройного» теста.

Средний результат для каждого гормона (MoM) и стал основой для определения границы нормы. Так, если полученный результат при делении на MoM составляет 0.5-2.5 единиц, то уровень гормона считается нормальным. Если меньше 0.5 MoM - низким, выше 2,5 - высоким.

Какая степень риска хромосомных аномалий считается высокой?

В итоговом заключении риск по каждой патологии указывается в виде дроби.

    Высоким считают риск 1:380 и выше.

    Средним - 1:1000 и ниже - это нормальный показатель.

    Очень низким считают риск 1:10000 и ниже.

Эта цифра означает, что из 10 тысяч беременных с таким уровнем, например, ХГЧ, только у одной родился ребенок с синдромом Дауна.

Мнение специалиста

Риск 1:100 и выше является показанием для проведения диагностики хромосомной патологии плода, но меру критичности данных результатов каждая женщина определяет сама для себя. Кому-то вероятность 1:1000 может показаться критичной.

Точность биохимического скрининга беременных

Многие беременные с опаской и скепсисом относятся к биохимическому скринингу. И это неудивительно - этот тест не дает никакой точной информации, на его основании можно лишь предположить вероятность существования хромосомных нарушений.

Кроме того информативность биохимического скрининга может снижаться, если:

    беременность произошла в результате ЭКО;

    у будущей матери сахарный диабет;

    беременность многоплодная;

    будущая мать имеет лишний вес или его недостаток

Мнение специалиста

Как изолированное исследование, двойной и тройной тесты имеют малое прогностическое значение, при учете данных УЗИ достоверность возрастает до 60-70%, и лишь при проведении генетических анализов результат будет точным на 99%. Речь идет только о хромосомных нарушениях. Если мы говорим о врожденной патологии, не связанной с дефектами хромосом (например, «заячья губа» или врожденные пороки сердца и головного мозга), то здесь достоверный результат даст профессиональная ультразвуковая диагностика.

Генетические анализы при подозрении наличия хромосомных аномалий

На основании заключения УЗИ или при неблагоприятных результатах биохимического скрининга генетик может предложить будущей маме пройти . В зависимости от срока это может быть биопсия хориона или плаценты, амниоцентез или кордоцентез. Такое исследование дает высокоточные результаты, но в 0,5% случаев такое вмешательство может стать причиной выкидыша.

Забор материала для генетического исследования проводят под местной анестезией и при УЗИ-контроле. Тонкой иглой врач делает прокол матки и осторожно берет генетический материал. В зависимости от срока беременности это могут быть частицы ворсин хориона или плаценты (биопсия хориона или плаценты), амниотическая жидкость (амниоцентез) или кровь из пуповиной вены (кордоцентез).

Полученный генетический материал оправляют на анализ, который позволит определить или исключить наличие многих хромосомных аномалий: синдром Дауна, синдром Патау, синдром Эвардса, синдром Тернера (точность - 99%) и синдром Клайнфельтера (точность - 98%).

Четыре года назад появилась альтернатива этому методу генетического исследования - неинвазивный пренатальный генетический тест. Это исследование не требует получения генетического материала - для него достаточно взять на анализ кровь из вены будущей мамы. В основе метода - анализ фрагментов ДНК плода, которые в процессе обновлении его клеток попадают в кровоток беременной.

Делать этот тест можно начиная с 10 недели беременности. Важно понимать, что этот тест пока мало распространен в России, его делают очень немногие клиники, и далеко не все врачи считаются с его результатами. Поэтому нужно быть готовыми к тому, что врач может настоятельно рекомендовать инвазивное обследование в случае высоких рисков по УЗИ или биохимическому скринингу. Как бы там ни было - решение всегда остается за будущими родителями.

В нашем городе неинвазивные пренатальные генетические тесты делают клиники:

    «Авиценна». Тест Panorama. Неинвазивная пренатальная генетическая диагностика анеуплоидий 42 т.р. Неинвазивная пренатальная генетическая диагностика анеуплоидий и микроделеций - 52 т.р

    «Алмита». Тест Panorama. Стоимость от 40 до 54 т.р. в зависимости от полноты исследования.

    «УЗИ-студия». Тест Prenetix. Стоимость 38 т.р.

Мнение специалиста

Только хромосомный анализ может подтвердить или исключить хромосомную патологию. УЗИ и биохимический скрининг позволяют лишь рассчитать величину риска. Анализ на такие патологии как синдром Дауна, Эдвардса и Патау можно проводить с 10 недель беременности. Это делается посредством получения ДНК плода непосредственно из структур плодного яйца (прямой инвазивный метод). Риск, возникающий при инвазивном вмешательстве, при наличии прямых показаний гарантированно ниже опасности возникновения хромосомной патологии (примерно 0.2-0.5% по данным разных авторов).

Кроме того, сегодня любая беременная по собственному желанию может пройти обследование на наличие основных генетических заболеваний у плода прямым неинвазивным методом. Для этого достаточно лишь сдать кровь из вены. Метод является абсолютно безопасным для плода, но достаточно дорог, что и ограничивает его повсеместное применение.

Непростое решение

Вопрос о том нужна ли диагностика генетических заболеваний во время беременности и что делать с полученной в результате исследований информацией каждая женщина решает для себя сама. Важно понимать, что врачи не имеют права оказывать на беременную давления в этом вопросе.

Мнение специалиста

При сроке беременности до 12 недель женщина может сама определиться с вопросом о необходимости прерывания беременности в случае обнаружения какой-либо патологии плода. В более поздние сроки для этого нужны веские основания: патологические состояния, несовместимые с жизнью плода и заболевания, которые впоследствии приведут к глубокой инвалидизации или смерти новорожденного. В каждом конкретном случае этот вопрос решается с учетом срока беременности и прогнозом для жизни и здоровья плода и самой беременной.

Существуют два основания, по которым врачи могут рекомендовать прервать беременность:

    выявлены пороки развития у плода, не совместимые с жизнью или с прогнозом глубокой инвалидизации ребенка;

    состояние матери, при котором пролонгация беременности может вызвать неблагоприятное течение заболевания с угрозой для жизни матери.

Пренатальная диагностика - будь то биохимическое, ультразвуковое или генетическое исследование, не является обязательной. Некоторые родители хотят обладать максимально полной информацией, другие предпочитает ограничиваться минимальным набором обследований, доверяя природе. И каждый выбор достоин уважения.

Беременность – долгожданное состояние женщины. Однако это ещё и период переживаний. Ведь нормальное течение беременности – это далеко не гарантия того, что малыш родиться без патологий. На раннем сроке обязательно проводятся диагностические мероприятия, которые помогают исключить хромосомные патологии.

Аномалии плода хромосомного типа представляют собой появление дополнительной (лишней) хромосомы или же нарушение в структуре одной из хромосом. Происходит это ещё во время внутриутробного развития.

Так, каждый знает про синдром Дауна. Это заболевание, которое развивается внутриутробно. Связано оно с появлением лишней хромосомы непосредственно в 21 паре. Благодаря диагностике, а также внешним проявлениям течения беременности, можно выявить такую патологию ещё на ранних этапах развития плода.

Причины хромосомных аномалий

Хромосомные пороки могут развиться по разным причинам. Часто это проблемы со здоровьем у матери:

  • инфекции;
  • проблемы с эндокринной системы;
  • заболевания любых внутренних органов;
  • токсикоз при беременности;
  • прежние аборты;
  • угроза выкидыша.

Большую роль играют экология, которая постоянно действует на организм женщины, а также особенности окружающей среды:


Немаловажен наследственный фактор. Мутации генов, аберрации хромосом – частые причины развития аномалий.

Уже при планировании беременности нужно задуматься о сбалансированном питании:

  1. Все основные ингредиенты должны обязательно в достаточном количестве присутствовать в меню (витамины, жиры, минералы, углеводы и белки).
  2. Нужно позаботиться о наличии в меню продуктов с микронутриентами (полиненасыщенные жирные кислоты, важные для организма микроэлементы). Так, дефицит такого элемента, как йод в организме может привести к нарушению развития мозга будущего ребёнка.

Факторы риска

Существует множество факторов риска для развития хромосомных аномалий. Со стороны матери это такие проблемы, как:

Есть риски и со стороны плода:

  • Задержка развития.
  • Многоплодная беременность.
  • Аномалии в предлежании.

Лекарства, беременность и хромосомные патологии

На плод влияют многие лекарственные препараты, которые принимает женщина во время беременности:

  • аминогликозиды токсически влияют на развитие уха и почек;
  • алоэ способствует усилению перистальтике кишечника;
  • антигистаминные средства могут вызвать тремор и заметно снижают давление;
  • андрогены – причина развития пороков плода;
  • антикоагулянты могут вызвать проблемы с костеобразованием, а также энцефалопатию;
  • атропин – причина мозговой дисфункции;
  • белладонна вызывает у плода тахикардию;
  • средства для снижения давления значительно снижают кровоток плаценте;
  • диазепам может навредить внешности будущего ребёнка;
  • кортикостероиды угнетают функциональное предназначение надпочечников, ведут к энцефалопатии;
  • кофеин поражает печень плода;
  • литий развивает пороки сердца;
  • опиаты влияют на мозговую деятельность;
  • противосудорожные средства заметно задерживают внутриутробное развитие малыша;
  • тетрациклины приводят к аномалиям скелета.

Признаки

Процесс развития аномалий во внутриутробном состоянии сегодня изучен недостаточно. Именно поэтому признаки аномалий считаются условными. Среди них:

Все эти признаки могут быть и нормой развития плода, при условии подобной особенности организма ребёнка или же матери. Максимально точно убедиться в том, что присутствуют хромосомные аномалии, помогут анализы кров, инвазивные методики и УЗИ.

Диагностика

Главная задача диагностических мероприятий, которые назначаются во время беременности – выявление пороков развития плода. Сегодня есть огромное количество методов, позволяющих точно поставить диагноз или исключить наличие аномалий.

Неинвазивные методы:

  • УЗИ назначается за всю беременность 3 раза (до 12 недель, на 20-22 неделе и 30-32 неделе).
  • Определение биохимических маркеров в сыворотке крови. ХГЧ, протеин А – отклонения от нормы могут свидетельствовать о внематочной беременности или развитии хромосомных нарушений. Альфа-фетопротеин – пониженный уровень говорит о наличии риск развития синдрома Дауна, а повышенный уровень расскажет о возможном пороке ЦНС. Эстриол – в норме должен постепенно нарастать с увеличением срока беременности.

Инвазивные методики:

Уже после рождения ребёнка для определения аномалий могут быть использованы любые методики из арсенала современной медицины:

  • лучевые методы (КТ, КТГ, Рентген, УЗИ);
  • эндоскопические;
  • исследования биологических материалов;
  • пробы функциональные.

Возможные патологии

Развитие многих аномалий наблюдается в конкретные периоды беременности:

  • 3 недели – эктопия сердца, отсутствие конечностей, а также сращение стоп;
  • 4 недели – отсутствие стоп, гемивертебра;
  • 5 недель – расщепление костей лица, а также такие страшные проблемы, как отсутствие кистей, стоп;
  • 6 недель – полное отсутствие нижней челюсти, а также порок сердца, хрусталиковая катаракта;
  • 7 недель – абсолютное отсутствие пальцев, развитие круглой головы, неисправимое расщепление нёба сверху, а также эпикантус;
  • 8 недель – отсутствие носовой кости, укорочение пальцев.

Последствия развития проблем хромосомного характера – самые разнообразные. Это могут быть не только внешние уродства, но и поражения, нарушения работы ЦНС. Возникшие патологии зависят от того, какая именно аномалия хромосом произошла:

  1. Если нарушено количественная характеристика хромосом, может возникнуть синдром Дауна (в 21 паре – одна лишняя хромосома), синдром Патау (тяжелейшая патология с многочисленными пороками), синдром Эдвардса (часто появляется у детей пожилых мам).
  2. Нарушение количества половых хромосом. Тогда вероятно развитие синдрома Шерешевского-Тёрнера (развитие половых желёз по неверному типу), полисомии характеризуются разными проблемами, синдрома Клайнфельтера (нарушения именно у мальчиков по X-хромосоме).
  3. Полиплоидия обычно заканчивается смертью ещё в утробе матери.

Генные мутации до конца ещё не изучены учёными. Причины их развития до сих пор исследуются специалистами. Но уже у 5% всех беременных в мире выявляют генетические аномалии плода.



Загрузка...