paradisemc.ru

Методы очистки веществ в лаборатории химия. Очистка веществ методом перекристаллизации. Вопросы и задания

Введение

Бор в основном применяется в виде буры.

БУРА - натриевая соль тетраборной кислоты. Она широко применяется при производстве легкоплавкой глазури для фаянсовых и фарфоровых изделий и, особенно для чугунной посуды (эмаль); кроме того, она идет для приготовления специальных сортов стекла.

На растворении окислов металлов основано применение буры при спаивании металлов. Так как можно спаивать только чистые поверхности металлов, то для удаления окислов место спайки посыпают бурой, кладут на него припой и нагревают. Бура растворяет окислы, и припой хорошо пристает к поверхности металла.

Бор играет важную роль в жизни растений. присутствие в почве небольшого количества соединений бора необходимо для нормального роста с/х культур, как, например хлопка, табака, сахарного тростника и др.

В ядерной технике бор и его сплавы, а также карбид бора применяют для изготовления стержней реакторов. Бор и его соединения используют в качестве материалов, защищающих от нейтронного излучения.

Данная работа посвящена методам очистки буры как основного вещества – источника бора.


Бура и ее свойства

Тетрабора́т на́трия («бура») - Na 2 B 4 O 7 , соль слабой борной кислоты и сильного основания, распространённое соединение бора, имеет несколько кристаллогидратов, широко применяется в технике.

Химия

Структура аниона 2− в буре

Термин «бура» применяют по отношению к нескольким близким веществам: она может существовать в безводной форме, в природе чаще встречается в виде пятиводного или десятиводного кристаллогидрата:

· Безводная бура (Na 2 B 4 O 7)

· Пентагидрат (Na 2 B 4 O 7 ·5H 2 O)

· Декагидрат (Na 2 B 4 O 7 ·10H 2 O)

Однако наиболее часто слово бура относят к соединению Na 2 B 4 O 7 ·10H 2 O.

Природные источники

Бура, «cottonball»

Тетраборат натрия (Бура) встречается в солевых отложениях, образованных при испарении сезонных озёр.

Бура́ (декагидрат тетрабората натрия, Na 2 B 4 O 7 · 10H 2 O) - прозрачные кристаллы, при нагревании до 400°C полностью теряют воду.

Обычная бура (десятиводный гидрат) образует большие бесцветные прозрачные призматические кристаллы; базоцентрированная моноклинная решётка, а = 12, 19 Å, b = 10, 74 Å, с = 11, 89 Å, ß = 106°35´; плотностью 1, 69 - 1, 72 г/см 3 ; в сухом воздухе кристаллы выветриваются с поверхности и мутнеют.

В воде бура гидролизуется, её водный раствор имеет щелочную реакцию.

С оксидами многих металлов бура при нагревании образует окрашенные соединения - бораты («перлы буры»). В природе встречается в виде минерала тинкаля.

Тинкал, или «Бура» (декагидрат тетрабората натрия, Na 2 B 4 O 7 ·10H 2 O) - минерал моноклинной сингонии, призматический. «Тинкал» (Tinkal) - слово санскритского происхождения, являющееся синонимом более часто употребляемого названия минерала - «Бура» (от арабского «бюрак» - белый).

Цвет белый, блеск стеклянный, твёрдость по Моосу 2 - 2,5.

Плотность 1,71.

Спайность средняя по (100) и (110).

Образует короткопризматические кристаллы, по форме напоминающие кристаллы пироксенов, а также сплошные зернистые массы и прожилки в глинистых породах.

Типичный минерал эвапоритов.

На воздухе разрушается, теряя кристаллизационную воду и покрывается коркой тинкалконита или кернита, со временем превращается в них полностью.

Так называемая Ювелирная бура - пятиводный тетраборат натрия Na 2 B 4 O 7 ·5H 2 O.

Бура применяется:

· в производстве эмалей, глазурей, оптических и цветных стекол;

· при пайке и плавке в качестве флюса;

· в бумажной и фармацевтической промышленности;

· в производстве строительных материалов как компонент антисептика для изготовления целлюлозного утеплителя «Эковата»

· как дезинфицирующее и консервирующее средство;

· в аналитической химии:

o как стандартное вещество для определения концентрации растворов кислот;

o для качественного определения оксидов металлов (по цвету перлов);

· в фотографии - в составе медленно действующих проявителей в качестве слабого ускоряющего вещества;

· как компонент моющих средств;

· как компонент косметики;

· как сырьё для получения бора;

· как инсектицид в отравленных приманках для уничтожения тараканов.

В сухом воздухе кристаллы выветриваются с поверхности и мутнеют. При нагревании до 80°С декагидрат теряет 8 молекул воды, при 100 градусах медленно, а при 200°С быстро отщепляется ещё одна молекула воды, в интервале 350 - 400°С происходит полное обезвоживание.

Растворимость буры (в г. безводной соли на 100 г. воды): 1, 6 (10°С), 3, 9 (30°С), 10, 5 (50°С). Насыщенный раствор кипит при 105°С.

В воде бура гидролизуется, поэтому её раствор имеет щелочную реакцию.

Щелочная реакция раствора тетрабората натрия обусловлена тем, что в водном растворе протекает реакция гидролиза c образованием в растворе борной кислоты B(OH) 3:

Na 2 B 4 O 7 = 2Na + + B 4 O 7 2– ;

B 4 O 7 2– + 7H 2 O 2OH – + 4B(OH) 3 ,

а выделение аммиака при взаимодействии с NH4Cl отвечает уравнению:

Na 2 B 4 O 7 + 2NH 4 Cl + H 2 O = 2NH 3 ­ + 2NaCl + 4B(OH) 3

Бура растворяется в спирте и глицерине.

Сильными кислотами полностью разлагается:

Na 2 B 4 O 7 + H 2 SO 4 + 5H 2 O = Na 2 SO 4 + 4H 3 BO 3 .

Именно так голландский алхимик Вильгельм Гомберг, нагревая буру с серной кислотой H 2 SO 4 , выделил борную кислоту B(OH) 3 .

С окислами некоторых металлов бура даёт окрашенные бораты («перлы буры»):

Na 2 B 4 O 7 + CoO = 2NaBO 2 + Co(BO 2) 2 ,

что используется в аналитической химии для открытия этих металлов.

При медленном охлаждении раствора обычной буры при 79°С начинает выкристаллизовываться октаэдрическая бура Na 2 B 4 O 7 . 5H 2 O (или «ювелирная бура»), плотностью 1, 815 г/см 3 , устойчивая в интервале 60 - 150°С. Растворимость этой буры составляет 22 г. в 100 г. воды при 65°С, 31, 4 при 80°С и 52, 3 при 100°С.

Бура является важнейшим флюсом, облегчающим процесс плавки. Расплавленная бура образует при охлаждении на стенках тигля глазурь, предохраняет расплав от доступа кислорода и растворяет окислы металлов.

При медленном термическом обезвоживании обычной буры получается пиробура с плотностью 2, 371 г/см 3 и температурой плавления 741°С. Бура плавится и распадается на метаборат натрия и трёхокись бора, которые смешиваются в жидком состоянии:

Na 2 B 4 O 7 → 2NaBO 2 + B 2 O 3 .

Окись бора, соединяясь с окислами металлов, образует метабораты так же, как борная кислота. Метаборат натрия легко смешивается со вновь образованными метаборатами и быстро уводит их из зоны расплавленного металла, а на их место вступают новые активные молекулы окиси бора.

Бура обладает большей способностью растворять окислы, чем борная кислота, и используется не только как плавильный восстановительный флюс, но и как важнейший флюс при пайке твёрдыми припоями.

Обычную буру получают из борной кислоты, из тинкаля, кернита и некоторых других минералов (путём их перекристаллизации), а также из воды соляных озёр (фракционированной кристаллизацией).

Буру широко применяют при приготовлении эмалей, глазурей, в производстве оптических и цветных стёкол, при сварке, резке и пайке металлов, в металлургии, гальванотехнике, красильном деле, бумажном, фармацевтическом, кожевенном производствах, в качестве дезинфицирующего и консервирующего средства и удобрения.


Очистка веществ методом перекристаллизации

Перекристаллиза́ция - метод очистки вещества, основанный на различии растворимости вещества в растворителе при различных температурах (обычно интервал температур от комнатной до температуры кипения растворителя, если растворитель - вода, или до какой-то более высокой температуры).

Перекристаллизация подразумевает плохую растворимость вещества в растворителе при низких температурах, и хорошую - при высоких. При нагревании колбы вещество растворяется. После стадии адсорбции примесей (если это необходимо) активированным углём, горячего фильтрования (при необходимости) и охлаждения образуется перенасыщенный раствор, из которого растворённое вещество выпадает в виде осадка. После пропуска смеси через колбу Бунзена и воронку Бюхнера либо центрифугирования получаем очищенное растворённое вещество.

· Достоинство метода: высокая степень очистки.

· Недостаток метода: сильные потери вещества в ходе перекристаллизации: всегда часть растворённого вещества в осадок не выпадет, потери при перекристаллизации нередко составляют 40-50 %.

Растворителем могут быть вода, уксусная кислота, этанол (95 %), метанол, ацетон, гексан, пентан - в зависимости от условий.

Если растворителем является вода, то нагревание проводят в водяной бане. Охлаждение перенасыщенного раствора проводят с помощью водяного холодильника, если температура кипения растворителя ниже 130 градусов, если выше - с помощью воздушного холодильника.

Растворимость большинства твердых веществ с ростом температуры увеличивается. Если приготовить горячий концентрированный (почти насыщенный) раствор такого вещества, то при охлаждении этого раствора начнется выпадение кристаллов, поскольку растворимость вещества при более низкой температуре меньше. Образование холодного насыщенного раствора, концентрация которого меньше, чем исходного (горячего), будет сопровождаться кристаллизацией «излишка» вещества.

Растворение вещества, содержащего растворимые примеси, в горячей воде, а затем осаждение его из раствора при достаточном охлаждении - это способ очистки вещества от растворимых примесей, который называют перекристаллизацией. Примеси при этом, как правило, остаются в растворе, так как присутствуют там в ничтожно малых («следовых») количествах и при охлаждении не могут образовать своего насыщенного раствора.

Некоторая часть очищаемого вещества также остается в холодном насыщенном растворе, который в лабораторной практике называют маточным , и такие неизбежные (плановые) потери вещества можно рассчитать по значению растворимости вещества при этой температуре.

Чем больше уменьшается растворимость вещества при охлаждении раствора, тем выше будет выход перекристаллизованного вещества.

Многие твердые вещества при кристаллизации из водного раствора образуют кристаллогидраты; например, из водного раствора сульфат меди (II) кристаллизуется в виде CuSO 4 ·5 H 2 O. В этом случае при расчете необходимо учитывать воду, которая входит в состав кристаллогидрата.

Перекристаллизация имеет большое значение в химии и химической технологии, поскольку подавляющее большинство твердых веществ - химических продуктов, реактивов, химикатов, лекарств и т.д. получают из водных и неводных растворов, а заключительная стадия этого получения - кристаллизация (или перекристаллизация с целью повышения чистоты продукта). Поэтому очень важно проводить указанные процессы эффективно, с наименьшими потерями и высокими показателями качества.

Для проведения перекристаллизации используют специальную химическую посуду и лабораторное оборудование.

Процесс перекристаллизации осуществляют в несколько стадий:

Выбор растворителя;

Приготовление насыщенного горячего раствора;

- «Горячая» фильтрации;

Охлаждение раствора;

Отделение образовавшихся кристаллов;

Промывание кристаллов чистым растворителем;

Высушивание.

Выбор растворителя

Правильный выбор растворителя - условие при проведении перекристаллизации.

К растворителя выдвигают ряд требований:

Значительная разница между растворимостью вещества в определенном растворителе при комнатной температуре и при нагревании;

Растворитель должен растворять при нагревании только вещество и не растворять примеси. Эффективность перекристаллизации возрастает при увеличении разности в растворимости вещества и примесей;

Растворитель должен быть индифферентным как к веществу, так и к примесям;

Температура кипения растворителя должна быть ниже температуры плавления вещества на 10 - 15°С, иначе при охлаждении раствора вещество выделится не во кристаллической форме, а в виде масла.

Экспериментально растворитель выбирают так: небольшую пробу вещества помещают в пробирку, добавляя в нее несколько капель растворителя. Если вещество растворяется без нагревания, такой растворитель не пригоден для перекристаллизации.

Выбор растворителя считается правильным, если вещество плохо растворяется в нем без нагрева, хорошо - при кипении, а при охлаждении горячего раствора происходит ее кристаллизация.

Как растворитель при перекристаллизации используют воду, спирты, бензол, толуол, ацетон, хлороформ и другие органические растворители или их смеси.

Вещество для перекристаллизации помещают в колбу (1), добавляют небольшую порцию растворителя и нагревают с обратным холодильником (2) до кипения раствора. Если исходного количества растворителя не хватает для полного растворения вещества, растворитель небольшими порциями добавляют с помощью воронки через обратный холодильник.

Эффективная очистка сильно загрязненных веществ возможно с помощью различных адсорбентов (активированный уголь (activeated carbon), силикагель и т.д.). В этом случае готовят горячий насыщенный раствор вещества, охлаждают его до 40 - 50°С, добавляют адсорбент (0,5 – 2 % от массы вещества) и снова кипятят с обратным холодильником в течение нескольких минут.

«Горячая» фильтрация

Для отделения от механических примесей и адсорбента горячий раствор фильтруют. Чтобы предотвратить выделение вещества на фильтре применяют различные методы.

Простая установка «горячего» фильтрования (рис. 3.2) состоит из специальной воронки для «горячего» фильтрования (1), обогреваемой паром, химической воронки (2) со складчатым фильтром (3), который помещается в нее.

Горячий насыщенный раствор вещества быстро выливают на бумажный фильтр, помещенный в стеклянную воронку, которая нагревается с помощью воронки для горячего фильтрования. Фильтрат собирают в стакан или коническую колбу. При образовании на фильтре кристаллов вещества их промывают небольшим количеством горячего растворителя.

Охлаждение раствора

При охлаждении фильтрата до комнатной температуры начинается процесс кристаллизации. Для ее ускорения фильтрат охлаждают под струей холодной воды. При этом растворимость вещества уменьшается, происходит окончательная кристаллизация.

Отделение образовавшихся кристаллов

Отделение кристаллов от растворителя осуществляют с помощью фильтрования, при этом отсос или создания вакуума в приемнике часто используют для ускорения процесса фильтрования. Для этого используют вакуумный насос (водоструйный, масляный или Камовского).

Фильтрация осуществляется на установке, которая состоит из воронки Бюхнера (1) с бумажным фильтром, колбы Бунзена или специальной пробирки (2), промежуточной стакана (3) и вакуумного насоса. Размер бумажного фильтра должен точно совпадать с площадью дна воронки Бюхнера.

Бумажный фильтр смачивают растворителем, вкладывают в воронку и включают вакуумный насос. При работе насоса под фильтром создается пониженное давление - возникает характерный звук, что свидетельствует о наличии вакуума в системе и возможность фильтрации. Охлажденный кристаллический продукт вместе с растворителем при взбалтывании небольшими порциями переносят с конической колбы на бумажный фильтр.

В процессе фильтрования растворитель проходит через фильтр, осадок остается на нем. Следует следить, чтобы фильтрат НЕ заполнил колбу до уровня тубуса, соединенного с промежуточной стаканом. Фильтрация продолжают до тех пор, пока не перестанет капать фильтрат. После этого осадок отжимают на фильтре широкой стеклянной пробкой или специальной стеклянной палочкой, выключают насос, промывают осадок чистым растворителем, включают насос и снова отжимают. Установку отсоединяют от вакуума, вынимают воронку. Фильтр вместе с веществом аккуратно переносят в чашку Петри или специальную емкость для высушивания.

Высушивание твердого вещества

Сушить твердое вещество можно на воздухе при комнатной температуре. Гигроскопичны вещества высушивают в эксикаторах; устойчивы к воздействию воздуха и температуры - в сушильном шкафу, где температура должна быть на 20 - 50°С ниже температуры плавления данного вещества. Для перекристаллизованного и высушенного продукта определяют массу, выход и температуру плавления.

Определение температуры плавления

Температурой плавления вещества считают температурный интервал от начала до полного расплавления этого вещества. Чем чище вещество, тем меньше этот интервал. Разница между температурой, при которой начинается образование жидкой фазы и температурой полного расплавления для чистых соединений, не превышает 0,5°С.

Наличие незначительного количества примесей в веществе снижает ее температуру плавления и соответственно увеличивает интервал плавления. Это свойство используют для установления идентичности двух веществ, если одна из них известна: тщательно смешивают одинаковые количества веществ и определяют температуру плавления смеси (смешанная проба). Если температура плавления смешанной пробы такая же, как и у чистого вещества, делают вывод об идентичности обоих веществ.

Температуру плавления кристаллической органического вещества определяют в капилляре. Капилляр извлекают из стеклянной трубки, нагревая ее на пламени горелки. Один конец капилляра запаивают.

Перекристаллизованное вещество тщательно растирают на часовом стекле или в ступке. Открытым концом капилляра набирают небольшое количество вещества и бросают его запаянным концом вниз в стеклянную трубку длиной ≈ 60 - 80 см, поставленную вертикально на лабораторный стол. Операцию наполнения капилляра повторяют несколько раз, пока в нем не образуется цельный столбик вещества высотой 2 - 3 мм.

Наполненный капилляр (1) закрепляют резиновыми кольцами (2) на термометре (3) так, чтобы проба вещества находилась на уровне шарики термометра. Нагрев прибора регулируют так, чтобы температура увеличивалась со скоростью 1°С в минуту. При этом внимательно следят за состоянием колонки вещества капилляре, отмечая все изменения - изменение окраски, разложение, спекание, намокания и т.п.. Началом плавления считают возникновение первой капли в капилляре (Т 1), а окончанием - окончание расплавления последних кристалликов вещества (Т 2). Интервал температур (Т 2 - Т 1) называют температурой плавления данного вещества (Т пл).


Практическая часть

Методики очистки

1 способ. 25 г буры при 60 0 С растворяют в 50 мл воды. Раствор быстро фильтруют через складчатый фильтр в фарфоровую чашку или стакан, охлаждаемый снегом. Фильтрат непрерывно помешивают стеклянной палочкой.

Тетраборат натрия выпадает в виде мелких кристаллов, их отсасывают, промывают небольшим количеством холодной воды и повторяют перекристаллизацию. Кристаллы высушивают на воздухе в течение 2 – 3 дней. Полученный препарат имеет формулу Na 2 B 4 O 7 *10H 2 O и пригоден для установки титра.

2 способ. 25 г буры при 65 - 70 0 С растворяют в 75 мл воды. Полученный раствор быстро фильтруют через складчатый фильтр, вставленный в воронку с обрезанным концом, или через воронку для горячего фильтрования. Фильтрат сначала охлаждают медленно до 25 - 30 0 С, а затем быстро в ледяной воде или в снегу, усиливая кристаллизацию перемешиванием палочкой. Выпавшие кристаллы отсасывают, промывают небольшим количеством ледяной воды и высушивают между листами фильтровальной бумаги в течение 2 – 3 дней. Высушенные кристаллы буры должны легко отставать от сухой палочки.

Рассчитывают процент практического выхода буры.

Перекристаллизованную буру хранят в банке с хорошо притертой пробкой.

Основными методами очистки твердых веществ в лаборатории органического синтеза являются перекристаллизация и возгонка. К методам выделения органических веществ из реакционной массы относится кристаллизация, выпаривание, фильтрование, экстракция (экстрагирование).

КРИСТАЛЛИЗАЦИЯ

КРИСТАЛЛИЗАЦИЯ – процесс выделения твёрдой фазы в виде кристаллов из растворов, расплавов и паров.

Кристаллизация начинается при достижении некоторого предельного условия, например, переохлаждения жидкости или пересыщения пара, когда практически мгновенно возникает множество мелких кристалликов - центров кристаллизации . Кристаллики растут, присоединяя атомы или молекулы из жидкости или пара. Рост граней кристалла происходит послойно, края незавершенных атомных слоев (ступени) при росте движутся вдоль грани. Зависимость скорости роста от условий кристаллизации приводит к разнообразию форм роста и структуры кристаллов (многогранные, пластинчатые, игольчатые, скелетные, дендритные и другие формы, карандашные структуры и т. д.). Кристаллизацию растворов удобно проводить в кристаллизаторах, поддерживая в них необходимую температуру (рис. 69).

Рисунок 69. – Кристаллизаторы.

Сильно загрязненные вещества, обычно, плохо кристаллизуются. Примеси, как правило, замедляют процесс кристаллизации, вероятно в виду их адсорбции на поверхности центров кристаллизации, и способствуют образованию нечистых и плохо сформированных кристаллов, так как мешают быстрой и правильной ориентации молекул вещества на поверхности кристалла. Так, сахароза, содержащая 30% примесей, кристаллизуется в 2 раза медленнее, чем сахароза с 28% примесей, и в 30 раз медленнее, чем чистая сахароза.

В некоторых случаях процесс кристаллизации протекает крайне медленно. Если кристаллизация при охлаждении сразу не наступает, необходимо оставить раствор стоять, по меньшей мере, на сутки, а иногда и на значительно более долгое время.

Следует также иметь в виду, что образование крупных, хорошо сформированных кристаллов, наблюдающееся при медленном охлаждении раствора, нередко может приводить к получению менее чистого продукта, так как крупные кристаллы обычно содержат включения маточного раствора. Относительно мелкие кристаллы, получающиеся при быстром охлаждении и перемешивании раствора, гораздо чище и более однородны по форме. Впрочем, если кристаллы слишком мелки, на их поверхности возможна адсорбция примесей из раствора, что также нежелательно.

Насыщенный раствор - раствор, в котором растворённое вещество при данных условиях достигло максимальной концентрации и больше не растворяется. Осадок данного вещества находится в равновесном состоянии с веществом в растворе.

Пересыщенный раствор - раствор, содержащий при данных условиях больше растворённого вещества, чем в насыщенном растворе, избыток вещества легко выпадает в осадок. Обычно пересыщенный раствор получают охлаждением раствора, насыщенного при более высокой температуре (пересыщение).

Скорость кристаллизации

Скорость кристаллизации определяют преимущественно три фактора:

1. изменение растворимости вещества, т. е. степени насыщенности раствора, в связи с изменением температуры;

2. скорость возникновения центров кристаллизации;

3. скорость роста кристаллов.

Наиболее быстро кристаллизация происходит при температуре на 20–50 о С ниже температуры плавления. Вблизи же температуры плавления вещества происходит резкое падение скорости кристаллизации, что объясняется увеличением влияния выделяющейся теплоты кристаллизации.

Слишком сильное охлаждение часто препятствует кристаллизации. Это в большей степени объясняется увеличением вязкости, которая тормозит правильную ориентацию молекул вещества друг относительно друга и относительно уже имеющейся поверхности кристалла.

Стимуляция кристаллизации

Часто, кристаллическое вещество не выделяется из пересыщенного раствора или же расплавленное вещество не кристаллизуется даже при охлаждении. В таком случае, обычно, применяются несколько приемов, стимулирующих кристаллизацию.

Внесение затравки («заражение»)

Центром кристаллизации могут выступать кристаллы того же вещества, которые добавляют из вне в качестве затравки. Таким образом, в растворе или расплаве искусственно создаются центры кристаллизации, обладающие необходимой кристаллической формой.

Температурная стимуляция

Часто если быстрой кристаллизации при охлаждении не происходит можно оставить раствор с исследуемым веществом на сутки или более продолжительное время при температуре примерно на 100 о С ниже ожидаемой температуры плавления, после чего выдержать его при температуре на 50 и затем на 30 о С ниже температуры плавления, чтобы образовавшиеся активные центры дали нужный рост кристаллов.

Трение стеклянной палочкой

Широко распространенный и весьма эффективный прием стимулирования кристаллизации заключается в трении стеклянной палочкой о внутренние стенки сосуда. При этом образуется мелкая стеклянная пыль, отдельные частички которой могут случайно оказаться подходящими центрами кристаллизации. Такую же роль могут играть и отдельные точки на образовавшейся в результате трения шероховатой поверхности стекла.

Значение пылинок, всегда находящихся в воздухе лаборатории, очень важно для процесса кристаллизации. Нередко, если кристаллизации не происходит даже при стимуляции, раствор, расплав исследуемого вещества или масло, в виде которого оно выделилось, оставляют в открытом сосуде (колба, стакан, чашка Петри) на долгое время, рассчитывая на возможное попадание на поверхность жидкости таких пылинок, которые вызовут кристаллизацию.

Кристаллизация всегда начинается от стенок сосуда и от поверхности жидкости к центру, а не наоборот. Неверно считать причиной этого явления охлаждение внешних слоев жидкости, так как подобным же образом происходит и кристаллизация вещества из пересыщенных растворов, не подвергаемых охлаждению.

Кристаллизация всегда начинается на твердых поверхностях или на границе раздела фаз. Возможно, и в этих случаях решающее значение имеют определенные твердые частички, плотно приставшие к стенкам или собирающиеся обычно на поверхности жидкости.

Часто можно наблюдать, что повторная кристаллизация в одном и том же сосуде начинается в тех же точка, что и первый раз. Это свидетельствует о наличии центров кристаллизации, не изменяющихся при полном растворении или расплавлении вещества.

И все же часто причиной невозможности кристаллизации является низкая концентрация вещества в растворе, (ненасыщенный раствор). В таком случае часть растворителя необходимо удалить, например, путем выпаривания.

Выпаривание

Выпаривание – процесс концентрирование растворов путём частичного испарения растворителя при
кипении

Выпаривание чаще всего производится при повышенной температуре, иногда при кипении, и/или под вакуумом. На испарение растворителя расходуется тепловая энергия, которую следует подводить извне. При выпаривании повышаются концентрация, плотность и вязкость раствора, а также температура его кипения. При пересыщении раствора растворённое вещество выпадает в осадок.

Наиболее часто в органическом синтезе для выпаривания используется роторный испаритель (рис. 70).

Роторный вакуум-испаритель - прибор, предназначенный для автоматизации перегонки жидкостей при уменьшенном давлении.

Принцип действия

Перегонная колба (А) на шлифе вращается с помощью электромотора (С), что позволяет увеличить поверхность жидкости, которая в виде тонкой плёнки смачивает стенки колбы, и тем самым уменьшить время перегонки и мощность нагрева. Нагрев бани осуществляется термонагревательными элементами, которые передают тепло воде (водяная баня) либо высококипящему маслу (масляная баня), если требуется нагрев выше 100 0 С (B). Через трубку (H) прибор подключают к водоструйному или масляному насосу. Пары растворителя конденсируются в холодильнике (F) и стекают в колбу-приёмник (G).

В принципе, возможно применение любого холодильника с подходящим по диаметру шлифом, однако в виду того, что при отгонке летучих растворителей часть паров будет "проскакивать" холодильник и уходить в атмосферу, можно регенерировать лишь половину растворителя или меньше. В связи с этим наиболее рациональным является использование, по возможности, наиболее эффективных холодильников с двойной рубашкой и спиралью.

Иногда, чтобы не потерять большое количество очень летучего растворителя, или предотвратить бурное вскипание и выброс раствора в холодильник (после чего ротор придётся чистить изнутри) имеет смысл производить перегонку при неполном вакууме, слегка приоткрывая кран-задвижку (H), или вовсе не использовать вакуум.

Рисунок 70. Роторный испаритель

Современные роторные испарители имеют микропроцесорный контроль температуры и скорости вращения, некоторые снабжены электроприводом для подъёма-опускания водяной бани.

Роторные испарители подходят для непрерывной и периодической дистилляции при нормальном давлении и в вакууме. Основным преимуществом роторных испарителей является безопасная тепловая обработка чувствительных к температуре сред. Ограничения в использовании роторных испарителей возникают в случае относительно длительного времени выдержки и образовании вязкого конечного продукта. Роторный испаритель позволяет обработать субстанцию с вязкостью до 5000 сПз (мПа). Роторные испарители могут использоваться для упаривания суспензий, проведения кристаллизации и сушки порошков и гранулатов. Также возможно проведение некоторых химических реакций.

Водные растворы можно выпаривать, нагревая их в круглодонной, плоскодонной колбе или фарфоровой чашке на электрической плитке. Небольшие количества органических растворителей (кроме легковоспламеняющихся жидкостей) допускается отгонять на электрических плитках (за исключением плиток с открытой спиралью) (рис 71).

Рисунок 71. – Варианты установок для упаривания водных растворов и отгонки органических растворителей

Наиболее часто небольшие количества органических растворителей отгоняют при пониженном давлении. Однако при этом происходит утечка испаряющихся паров растворителя с водой водоструйного насоса (рис).


Часто, при работе с малыми количествами веществ, для испарения небольшого количества растворителя используют чашки Петри.

Чашка Петри (англ. Petri dish, нем. Petrischale ) - лабораторная посуда, имеет форму невысокого плоского цилиндра, закрывается крышкой подобной же формы, но несколько большего диаметра. Применяется в биологии и химии.

Посуда, изобретённая в 1877 году, названа в честь изобретателя, немецкого бактериолога Юлиуса Рихарда Петри, ассистента Роберта Коха.

Чашка Петри обычно изготавливается из прозрачного стекла или пластмассы (прозрачный полистирол) и может иметь самые различные размеры. Наиболее часто используемые варианты имеют диаметр порядка 50 - 100 мм и высоту около 15 мм.

Кроме того, чашка Петри зачастую используется для хранения малых количеств веществ

Фильтрование

Фильтрование - процесс отделения твердой фазы смеси, находящихся в осадке, от жидкой фазы (маточного раствора) через пористую перегородку – фильтр

В качестве фильтра обычно используют фильтровальную бумагу, которая может быть различной пористости. Фильтрами могут служить также различные ткани, пористое стекло, асбест, обычная и стеклянная вата и др. При этом необходимо помнить, что фильтрующие материалы не должны взаимодействовать ни с растворителем, ни с отделяемым осадком.

Фильтрование можно проводить различными способами. Это определяется как характером растворителя, так и свойствами отделяемого вещества при фильтровании. Обычно пользуются двумя способами фильтрования: при атмосферном и пониженном давлении.

Разделение и очистка веществ являются операциями, обычно связанными между собой. Разделение смеси на составляющие чаще всего преследует цель получения чистых, по возможности без примесей, веществ. Однако само понятие о том, какое вещество следует считать чистым, еще окончательно не установлено, так как требования к чистоте вещества меняются. В настоящее время методы получения химически чистых веществ приобрели особое значение.

Разделение и очистка веществ от примесей основываются на использовании их определенных физических, физико-химических или химических свойств.

Техника важнейших методов разделения и очистки веществ (перегонка и сублимация, экстракция, кристаллизация и перекристаллизация, высаливание) описана в соответствующих главах. Это - наиболее распространенные приемы, чаще всего используемые не только в лабораторной практике, но и в технике.

В отдельных наиболее сложных случаях используют специальные методы очистки.

Диализ может быть использован для разделения и очистки веществ, растворенных в воде или в органическом растворителе. Этим приемом чаще всего пользуются для очистки высокомолекулярных веществ, растворенных в воде, от примесей низкомолекулярных или от неорганических солей.

Для очистки методом диализа необходимы так называемые полупроницаемые перегородки, или мембраны» Особенность их заключается в том, что они имеют поры, позволяющие проходить через них веществам, размер молекул или ионов которых меньше размеров пор, и задерживать вещества, размеры молекул или ионов которых больше размеров пор мембраны. Таким образом, диализ можно рассматривать как особый случай фильтрования.

Рис. 477. Диализатор с мешалкой.

В качестве полупроницаемых перегородок или мембран могут быть использованы пленки из очень многих высокомолекулярных и высокополимерных веществ. В качестве мембран применяют пленки из желатина, из альбумина, пергамент, пленки из гидратцел-люлозы (типа целлофана), из эфпров целлюлозы (ацетат, пи грат н пр.), из многих продуктов полимеризации п конденсации. Из неорганических веществ находят применение: иеглазуроваииый фарфор, плитки из некоторых сортов обожженной глины (типа коллоидных глин, как бентонит), прессованное мелкопористое стекло, керамика и др.

Основными требованиями к мембранам являются: 1) нерастворимость в том растворителе, на котором приготовлен диализируемый раствор; 2) химическая инертность по отношению как к растворителю, так и к растворенным веществам; 3) достаточная механическая прочность.

Многие мембраны способны набухать в воде или другом растворителе, теряя при этом механическую прочность. Набухшая пленка может быть легко повреждена или разрушена. В подобных случаях пленку для диализа изготовляют на какой-нибудь прочной основе, например на ткани, инертной к растворителю (хлопчатобумажная, шелковая, из стекловолокна, из синтетического волокна и др.), или па фильтровальной бумаге. Иногда для придания мембранам механической прочности их укрепляют металлическими сетками (армирование) из соответствующего металла (бронза, платина, серебро и пр.).

Для получения различной пористости у мембран из эфиров целлюлозы или из некоторых других высокополимерных веществ в соответствующие лаки вводят различное количество воды. При высыхании лаковой пленки получается мембрана молочного цвета, имеющая заданную пористость (об этом см. гл. 9 «Фильтрование»).

Для диализа применяют приборы называемые диализаторами (рис. 477). Они могут иметь различную конструкцию. Техника работы с диализаторами очень проста. Полупроницаемая мембрана разделяет прибор обычно на две части *. В одну половину прибора наливают раствор, подлежащий диализу, а в другую половину - чистый растворитель, причем последний обычно обновляют (постоянный ток жидкости). Если чистый растворитель не менять, то концентрации проходящих через мембрану веществ с обеих сторон ее в конце концов уравновесятся и диализ практически остановится. Если же растворитель все время обновлять, то из диализируемого раствора можно практически удалить все растворимые вещества, способные проникать через мембрану.

Скорость диализа неодинакова для различных веществ и зависит от ряда условий и свойств вещества, которое очищают. Повышение температуры раствора и обновление растворителя способствуют ускорению диализа.

Во многих случаях вместо обычного диализа применяют электродиализ**. Применение электрического тока при диализе ускоряет процесс и создает ряд других преимуществ.

Осаждение малорастворимых веществ. Этим приемом широко пользуются для аналитических целей, получая осадки, содержащие только какое-нибудь одно, неорганическое или органическое, вещество. Полученный осадок может быть дополнительно очищен или промыванием («Фильтрование», или повторным переосаждением после растворения осадка, или экстрагированием соответствующими растворителями в определенных для каждого случая условиях.

Аппаратура, применяемая для проведения этого метода, зависит от свойств веществ и свойств растворителей. Часто операцию можно проводить просто в стакане или в колбе. В других же случаях собирают герметизированную аппаратуру, подобную той, которая описана в гл. 10 «Растворение». Осадки отфильтровывают, промывают и затем подвергают дальнейшей обработке (перекристаллизации, сушке и т. д.).

* Имеются диализаторы, состоящие из трех частей и двух мембраи, разделяющих их.

** РЖХим., 1957, Ni 10, 247, реф. 34670.

Отделение малора«гворимого осадка от маточного раствора можно достичь отстаиванием с последующим промыванием осадка с применением декантации или центрифугирования. Чем продолжительнее отстаивание, тем больше уплотняется слой осадка. Однако не рекомендуется давать осадкам отстаиваться слишком долго, так как со временем между осадком и маточным раствором могут возникать побочные процессы (адсорбция других ионов, комп-лексообразование с растворителем), затрудняющие последующую "обработку отделяемого осадка.

Комплексообразование является одним из приемов выделения чистых веществ , особенно неорганических. Комплексные соединения могут быть или труднорастворимыми в воде, но легкорастворимыми в органических растворителях, или наоборот. В первом случае осадки обрабатывают, как описано выше. Если же комплексное соединение легко растворяется в воде, его можно извлечь в чистом виде из водного раствора путем экстрагирования подходящим органическим растворителем или же разрушить комплекс тем или иным путем.

Приемом комплексообразования можно выделить металлы в очень чистом виде. Это особенно касается редких и рассеянных металлов, которые могут быть выделены в виде комплексов с органическими веществами.

Образование летучих соединений. Этим приемом можно пользоваться в том случае, если образуется летучее соединение только выделяемого вещества, например какого-либо металла. В том случае, если одновременно образуются летучие соединения примесей, этот прием применять не рекомендуется, так как освобождение от летучих примесей может оказаться затруднительным. Во многих случаях образование летучих галогенидов (хлористые или фтористые соединения) некоторых веществ может оказаться очень эффективным как метод очистки, особенно в сочетании с вакуум-перегонкой. Чем ниже температура возгонки или кипения интересующего нас вещества, тем легче его отделить от других и очистить фракционной перегонкой или диффузией.

Скорость диффузии газообразных веществ через полупроницаемые перегородки зависит от плотности и молекулярной массы очищаемого вещества и почти обратно пропорциональна им,

Зонная плавка. Зонную плавку можно рассматривать как частный случай экстракции расплавленным веществом, когда твердая фаза вещества находится в равновесии с его жидкой фазой. Если растворимость в жидкой фазе какой-либо примеси, содержащейся в очищаемом веществе, отличается от растворимости в твердой фазе, то очистка от этой примеси теоретически возможна *. Этот метод особенно ценен для очистки таких соединений (преимущественно органических), которые имеют низкое давление паров или разлагаются при перегонке. Для соединений, имеющих низкую теплопроводность, зону плавления можно создать, применяя высокочастотный нагрев с диэлектрическим сопротивлением. Метод зонной плавки дает возможность полностью использовать исходные вещества и позволяет получать большие монокристаллы органических веществ и некоторых металлов (например, алюминия, германия и др.).

В простейшей форме метод зонной плавки в применении к металлам состоит в медленном перемещении расплавленной зоны вдоль стержня из металла.

Метод зонной плавки может найти широкое применение для приготовления чистых органических соединений.

Очистка бензойной кислоты . Цилиндрический сосуд наполняют расплавленной бензойной кислотой. Этот цилиндр с затвердевшей кислотой медленно пропускают через обогреваемое кольцо таким образом, чтобы расплавленная зона передвигалась вверх по цилиндру. Двукратная обработка бензойной кислоты таким приемом заменяет 11 перекристаллизации из бензола.

Очистка нафталина от антрацена **. Загрязненный нафталин помещают в трубку (из стекла пирекс) длиной около 900 мм и диаметром 25 мм. Эту трубку пропускают через небольшой цилиндрический нагреватель (может быть использована трубчатая печь для микроанализа, снабженная реостатом). Печь передвигают вниз с такой скоростью, чтобы расплавленная зона длиной около 50 мм могла бы переместиться по всей длине трубки за 24 ч. После этого нагреватель возвращают в исходное положение и цикл обработки повторяют. После 8 циклов содержание антрацена в верхней половине взятого для обработки нафталина составляло 1-10-4%

* P f а п n W. S. J„ MeUIs1 4, 747 (1952). ** Ind. Chemist, 31, Кз 370, 535 (1955).

Метод зонной плавки используют для получения чистого германия, а также для очистки соединений, когда один или оба компонента смеси летучи или разлагаются при нагревании **.

В настоящее время делаются попытки применить метод зонной плавки для очистки жидкостей. Этот метод оказался применим для"очистки только предварительно замороженной жидкости. Для этого жидкость помещают в узкую и длинную стеклянную лодочку (шириной 12 мм, длиной 110 мм) и замораживают при -30° С, с помощью циркуляционного охлаждающего устройства, работающего на смеси твердой углекислоты с ацетоном. Замороженную жидкость в лодочке медленно протягивают с помощью моторчика Уоррена со скоростью 1 см/ч через несколько последовательных зонных нагревателей, расположенных на расстоянии около 1,8 см друг от друга и представляющих собой витки нихро.мовой проволоки диаметром 0,5 мм (0,5 ом/м) в пазах небольших керамических блоков. Силу тока подбирают такой, чтобы температура расплавленных узких зон в замороженной жидкости была 3--4° С. Расплавленные зоны, перемещаясь одна за другой, увлекают за собой примеси, имевшиеся в жидкости. Примеси концентрируются в конечной части бруска замороженной жидкости. Таким приемом можно очищать водные и неводные растворы и выделять растворенные или только тонко диспергированные вещества.

Аппаратурное оформление метода зонной плавки зависит от свойств взятых веществ, и рекомендовать какую-либо стандартную аппаратуру в этом случае трудно.

Хроматография и ионный обмен. Эти методы основаны на использовании явления сорбции для извлечения веществ, содержащихся в растворах.

Метод хроматографии особенно важен для концентрирования веществ, содержание которых в исходном растворе очень мало, а также для получения чистых препаратов. При помощи этого метода были получены редкоземельные и заураповые элементы высокой чистоты. Многие фармацевтические и органические препараты очищают и получают в чистом виде при помощи этого метода. Почти во всех случаях, когда поставлена задача очистки или отделения какого-либо вещества из смеси, находящейся в растворе, хроматография и ионный обмен могут оказаться надежными методами.

Для ионного обмена применяют так называемые иониты, представляющие собой неорганические или органические адсорбенты (преимущественно смолы разных марок). По своим химическим свойствам они разделяются на следующие группы: катнониты, ани-ониты и амфолиты. Катиониты обменивают катионы. Аниониты обладают способностью обменивать анионы. Амфожгты способны обменивать как катионы, так и анионы-в зависимости от рН среды и свойств вещества, которое должно быть поглощено ионитом.

Для хроматографии в ряде случаев применяют очень простую аппаратуру (рис.478).

Иониты способны к ионному обмену до полного насыщения их поглощаемым ионом. Отработанные иониты регенерируют путем промывания катионитов кислотой, анионитов-щелочами.* В элюате (жидкость, получаемая при промывании ионита) будут находиться адсорбируемые ионитом ионы.

Для разделения и фракционирования полимеров предложен способ фильтрации их растворов через гель, названный «сефадекс» (Швеция). Этот способ называют г е л ь - ф и л ь т р а ц и е й. По существу он является хроматографическим разделением высокомолекулярных веществ на колонке.

Сефадекс выпускается в виде мелких зерен, набухающих в воде. Ниже приведены типы сефадскса и для примера - молекулярные веса разделяемых полисахаридов:



При использовании других веществ границы молекулярных весов могут отклоняться от приведенных значений в ту или иную сторону. Так, для белковых веществ диапазоны молекулярных весов шире, чем в случае полисахаридов. Для использования сефадекса сконструирована хро-матографическая колонка с рубашкой; колонка выполнена из боросиликатного стекла.

Вначале сефадекс смешивают с водой, взмучивают полученную смесь, вливают в колонку и дают осесть. Затем в колонку добавляют концентрированный раствор исследуемого вещества так, чтобы не взмучивался верхний слой сефадекса. Равновесие устанавливается очень быстро, поэтому скорость вымывания по сравнению с обычными иопитами может быть большой. Фракции контролируют или спектрофотометрически (органические полимеры), или по электропроводности (растворы неорганических веществ). Метод гель-фильтрования полностью заменяет диализ и электродиализ. При его помощи можно очень тонко фракционировать полимеры, которые мало отличаются между собой по молекулярным массам.

О зонной плавке льда см. Shildknecht H., M а п п 1 A., Angew. Chem., 69, Ня 20, 634 (1957); РЖХим, 1958, Ms 11, 107, реф. 35844; П ф а и н В. Дж., Зонная плавка, Металлургиздат, 1960.

Об автоматической аппаратуре для зонной плавки малых ко-: личеств веществ см. W i I m a n W. G., Chem. a. lnd., № 45, 1825 (1961); РЖХим, 1962, реф. 9Е34.

Приборы для зонной плавки органических соединении см. Ma ire J., Moritz J. С, Kief с г R., Symposium fiber Zoncn-schmelzen und Kolonnen - kristallisiereii, Karlsruhe, S. 1, s, a, 121 (1963); РЖХим, 1965, 14Д76.

Получение органических веществ высокой чистоты путем непрерывной кристаллизации в колонках и зонной плавки описали Schildknecht H., Ma as К., Kr a us W., Chem. lug. Techn.. 34, № 10, 697 (1962); РЖХим, 1964, 6Д70.

Зоиная плавка органических веществ, Херингтон E., пер. с англ., Изд. «Мир», I9G5; РЖХим, 1965, 13Б363К.

О зонной плавке органических соединений см. Wilcox W. R., Friedenberg R„ Back N., Chem. Revs, 64, Ki 2, 186 (1964); РЖХим, 1964, 19Б359.

Установка для зонной плавки см. Абакумов Б. И., Коновалов Э. Е„ Зав. лаб., 29, Ki 12, 1506 (1963); РЖХим, 1964, 24Д93.

Установку для бестигельной зонной плавки веществ с малым поверхностным натяжением описали Шплкин А. И., Ки-лиев А. А., Зав. лаб., 29, Ki 12, 1504 (1953); РЖХим, 1964, 24Д94.

О новых методах разделения в химии см. Muss о H., Natur-wiss., 45, № 5, 97 (1958); РЖХим, 1958, № 21, 148, реф. 70711.

О хроматографических методах очистки и выделения веществ см. Хроматографический метод разделения ионов. Сборник статей, Издатинлит, 1949; Ионный обмен. Сборник статей, Издатинлит, 1951; Лннстед Р., Эльвидж Дж., В о л л и M., В и л к и н с о н Дж., Современные методы исследования в органической химии, Издатинлит, 1959.

О молекулярных ситах см. Minkoff G. I., Duffett R. Н. E., BPMag., Ks 13, 16 (1964); РЖХим, 1965, 17А28.

Изготовление, свойства и применение синтетических цеолитов (молекулярных сит) см. Espe W., Hvbl С, 9 Internal Kolloq. Techn. Hochschule Ilmenau; РЖХим, 1966, 20Б814.

Об использовании синтетического цеолита типа А для очистки рубидия от калия, цезия и натрия непрерывным протнвоточным ионообменным методом см. Горшков В. И., Федоров В. А., Толмачев A. M., ЖФХ, 40, Ki 7, 1436 (1966); РЖХим, 1966, 24 Б1268.

О методе разделения растворенных веществ, основанном на различии в скоростях диффузии см. N i е s е 1 W., Roskenblock H., Naturwis., 50, Ki 8, 328 (1963); РЖХим, 1964, 5Б612.

Кристаллизация в колонке - лабораторный метод для тонкого

Разделения кристаллизующихся веществ см. Schild-Knecht H., lossler S., Ma a s K-, Glas- u. Instr.-Techn., 7, № 6, 281, 285, 289 (1963); РЖХим, 1964, 7Д66.

Применение хроматографии, основанной на проникновении вещества в гель, к веществам с низким и высоким молекулярным весом см. M а 1 е у L. E., Am. Chem. Soc. Polymer Preprints, 5, Ki 2, 720 (1964); РЖХим, 1965, 10Б1346.

Сефадекс и гель-фильтрация см. Ing. chim., 1963, № 3, 7 (1963); РЖХим, 1965, 10Б1344

Некоторые химические реактивы для выполнения аналитических работ приходится в лаборатории подвергать очистке. Очистка производится фильтрованием, перегонкой, перекристаллизацией, экстракцией, методами хроматографии и ионофореза.

Фильтрование

Фильтрование проводят для отделения твердых частиц от жидкости, например нерастворимых примесей от раствора реактива. Фильтрование основано на пропускании смеси жидкости с твердой фазой через пористый фильтр, например через фильтровальную бумагу. Поры (отверстия) в бумаге настолько малы, что через них проходит только жидкость, а все твердые частицы остаются на фильтре. Как скорость фильтрования, так и степень очистки зависят от размеров пор фильтра. На скорость фильтрования оказывает большое влияние вязкость жидкости и ее температура. Горячие жидкости всегда фильтруются быстрее, чем холодные.

Для фильтрования применяют стеклянную воронку (см. рис 4), которую укрепляют в кольце штатива или в специальной дощечке с отверстием для фильтрования. Иногда для небольших воронок делают специальный стеклянный крючок, с помощью которого можно прикрепить воронку непосредственно к стакану.

Фильтровальная бумага в отличие от обычной не проклеена, более волокниста, однородна и чиста. Выпускаются также готовые круглые фильтры из обеззоленной бумаги.

Для изготовления фильтра квадратный листок фильтровальной бумаги складывают пополам, затем вчетверо и округляют внешние края ножницами. Отделяют один слой бумаги, образуя угол, и подгоняют фильтр к воронке. Края фильтра должны быть на 3-5 мм ниже края воронки. Пространственный угол воронки должен быть равен 60°, но иногда раструб воронки несколько отклоняется от 60° в большую или меньшую сторону, и тогда фильтр не прилегает плотно к стенкам воронки. В этом случае, несколько меняя угол перегиба фильтра в ту или другую сторону, плотно подгоняют фильтр к стенкам воронки. После подгонки фильтра к воронке его смачивают чистым растворителем, для водных растворов - водой и, поглаживая чистым пальцем, прижимают фильтр к стенкам воронки так, чтобы под ним не было пузырьков воздуха.

Фильтрование проходит довольно быстро, когда в трубке воронки образуется столбик жидкости. Если столбик жидкости в трубке не образовался, тогда в воронку наливают воду выше краев фильтра, затем пальцем немного приподнимают фильтр и опускают его, стекающая жидкость почти всегда образует столбик в трубке воронки. Для этой же цели иногда удлиняют стеклянную трубку воронки резиновой трубкой.

Жидкость для фильтрования сливают в воронку по стеклянной палочке, прислонив к ней носик стакана. Палочку держат над фильтром вертикально, не прислоняя к фильтру. Если в растворе имеется осадок, то нужно дать ему отстояться, профильтровать осторожно большую часть жидкости и только под конец вылить раствор вместе с осадком. Это делается для того, чтобы осадок не забивал пор фильтра в начале фильтрования и чтобы оно не длилось слишком долго.

Для очистки растворов реактивов часто применяют плоеные (складчатые) фильтры, фильтрование через которые происходит гораздо быстрее. Плоеный фильтр делается также из квадратного листа фильтровальной бумаги. Сначала его складывают и обрезают как обычный фильтр (рис. 41). Затем отвертывают половину и правую четвертушку сгибают пополам внутрь, отгибают верхнюю восьмушку и складывают ее пополам, полученную шестнадцатую долю снова складывают пополам. По этой дольке (1/32 фильтра) складывают гармошкой весь фильтр. Готовый фильтр развертывают и вкладывают в воронку. Если фильтр большого размера, то он может прорваться во время фильтрования, для предотвращения этого в воронку вкладывают сначала небольшой обычный фильтр и плотно подгоняют к воронке. Необходимо также при складывании фильтра стремиться к тому, чтобы складки не подходили вплотную к центру фильтра.

Никогда не следует наливать жидкость до самого края фильтра. Конец трубки воронки нужно прислонить к стенке стакана для того, чтобы не было разбрызгивания фильтрата. Если фильтрат получился мутным, его фильтруют еще раз через тот же фильтр.

Концентрированные растворы кислот и щелочей, а также растворы перманганата фильтровать через бумагу нельзя, так как эти вещества разрушают ее. Их фильтруют обычно через стеклянную вату. Для этого вату обрабатывают сначала нагреванием с соляной кислотой, а затем хорошо промывают водой. Такую вату хранят в стакане с дистиллированной водой, а для фильтрования ее вкладывают в угол воронки. После конца фильтрования ее промывают водой и кладут в тот же стакан для хранения. Концентрированные растворы можно также фильтровать через стеклянные фильтрующие воронки с пористой пластинкой, применяя отсасывание.

Для отфильтровывания большой массы твердого вещества от жидкости применяют фильтрование с отсасыванием. Для этого пользуются колбой Бунзена и воронкой Бюхнера (см. рис. 6 и 29). Воронка вставляется в отверстие резиновой пробки, подобранной к горлу колбы Бунзена - толстостенной конической колбы с отростком для отсасывания; на отросток надевается резиновая трубка от водоструйного насоса (рис. 42).

На перегородку воронки кладут два бумажных фильтра соответствующего диаметра, смачивают их дистиллированной водой и плотно прижимают к перегородке стараясь удались все пузырьки воздуха из-под фильтров. Открыв водоструйный насос, проверяют, хорошо ли приложены фильтры. Если фильтры лежат хорошо, то будет слышен спокойный шумящий звук. Если же имеется подсос воздуха, то слышится свистящий звук. В этом случае фильтры прижимают пальцем к сетчатой перегородке до тех пор, пока свист не сменится спокойным шумящим звуком.

Не закрывая водоструйного насоса, сразу же вливают в воронку фильтруемую жидкость (до половины высоты воронки) и периодически добавляют ее, не допуская оголения фильтров. В силу разрежения, создаваемого в колбе Бунзена, жидкость довольно быстро протекает через фильтры. Осадок обычно одновременно с жидкостью переносят на фильтры, хорошо размешав смесь стеклянной палочкой. Рыхлый осадок уплотняют в воронке плоской стеклянной пробкой от бутыли. Отсасывание продолжают до полного прекращения появления капель с носика воронки. Необходимо следить, чтобы колба не наполнялась фильтратом до самого отростка.

Для прекращения отсасывания отсоединяют от колбы Бунзена резиновую трубку, идущую от водоструйного насоса, а затем выключают насос. Если водоструйный насос начать закрывать сразу, не отсоединив от «сосалки», то вода из насоса может попасть в фильтрат вследствие уменьшения давления внутри насоса. Воронку вынимают из колбы, вещество вытряхивают на фильтровальную бумагу и сушат. Фильтрование с отсасыванием применяют при перекристаллизации веществ.

Иногда требуется фильтровать горячие растворы, чтобы они не остывали во время фильтрования. Для этого применяют воронки горячего фильтрования.

Перегонка

Перегонкой (дистилляцией) производят очистку жидких веществ (например, воды, соляной кислоты, спиртов, эфира) от нелетучих примесей. Перегонка основана на том, что жидкость при нагревании до определенной температуры, зависящей от состава жидкости и атмосферного давления, начинает кипеть - бурно переходить в газообразное состояние (пар). Если этот пар охладить, отводя по газоотводной трубке, то он превратится в жидкость. Прибор для перегонки состоит из перегонной колбы 1 (рис. 43), холодильника 2 и приемника 4. Все нелетучие примеси, находящиеся в жидкости в растворенном состоянии, остаются в перегонной колбе.

Для сборки аппарата для перегонки жидкости используют колбу Вюрца - круглодонную колбу с длинной шейкой, от которой отходит длинная узкая отводная трубка. Горло колбы Вюрца закрывают резиновой или корковой пробкой с термометром; пробка должна быть плотно подогнана к горлу колбы. Термометр помещают так, чтобы его резервуар со ртутью был напротив отверстия отводной трубки и не касался стенок горла колбы. Конец отводной трубки пропускают через подогнанную пробку в холодильник Либиха на 3-4 см. Это сочленение также должно быть герметичным. На другом конце холодильника укрепляют аллонж 3 (см. рис. 43) - стеклянную изогнутую трубку, насаживая ее широким концом на пробку, надетую на конец холодильника, который пропущен через пробку на 2-3 см. Суженный конец аллонжа опускается в приемник, которым может быть любая посуда (колба, склянка).

Иногда холодильник Либиха состоит из отдельных частей, не спаянных между собой: холодильной трубки и холодильной рубашки. Для сборки такого холодильника трубку пропускают в рубашку и скрепляют с нею посредством отрезков (колец) резиновой трубки. Резиновую трубку подбирают к муфтам рубашки и надевают на них, затем пропускают через них холодильную (газоотводную) трубку, хорошо смазав ее вазелином и все время поворачивая.

При включении холодильника всегда подсоединяют нижний конец его рубашки, который обращен к приемной колбе, к водопроводному крану резиновой трубкой. От верхнего конца делают отвод в сточную раковину. Нужно следить, чтобы рубашка холодильника всегда была заполнена водой.

Колбу Вюрца укрепляют в лапке штатива так, чтобы ее можно было нагревать. Лапка должна обхватывать горло колбы выше отводной трубки. Подсоединяют колбу к холодильнику, укрепленному на втором штативе. Осторожно вынимают пробку с термометром, вставляют в горло колбы воронку с трубкой, спускающейся ниже отверстия отводной трубки, и наливают в колбу на 2/3 ее объема жидкость, которую нужно перегонять. Помещают в колбу несколько стеклянных капилляров, запаянных с одного конца, чтобы обеспечить равномерное кипение жидкости. Недопустимо во время перегонки бурное вскипание жидкости, так как это может привести к попаданию капель в отводную трубку и к загрязнению дистиллята.

Закрыв колбу пробкой с термометром и проверив надежность сборки прибора, подают воду в холодильник и затем включают нагрев. Обогрев можно вести на газовой горелке через сетку, на водяной бане или другими средствами. После закипания жидкости обогрев уменьшают настолько, чтобы происходило равномерное кипение.

Никогда не следует выпаривать жидкость полностью, ее должно оставаться в перегонной колбе 10-15% от первоначально взятого объема. Для новой заправки колбы обогрев выключают, дают колбе несколько остыть, осторожно вынимают пробку с термометром и доливают жидкость через воронку. Время от времени остатки с загрязнениями следует удалять из перегонной колбы.

Изготовляют также перегонные аппараты целиком из стекла. Такой аппарат состоит из перегонной и приемной колб и холодильника на пришлифованных пробках. Для термометра в пробке перегонной колбы имеется специальный кармашек. Согнутый конец трубки холодильника перед шлифом к приемной колбе имеет отросток для отвода избытка газов.

Многие жидкости имеют свои характерные особенности, которые необходимо учитывать при перегонке. Поэтому прежде чем приступать к перегонке какого-либо вещества, нужно по руководству хорошо ознакомиться с особенностями ее проведения.

В некоторых случаях для перегонки применяют специальный прибор. Он представляет собой цилиндрический сосуд вместимостью 1л, снабженный навинчивающейся крышкой с внутренним конусом (рис. 44). Внутри цилиндра размещены треножник и чашка. Все детали сделаны из фторопласта-4.

Этот прибор используют, например, для получения особо чистой фтористоводородной кислоты для спектрального анализа кремния и его соединений.

В цилиндрический сосуд наливают 500-600 мл очищаемой фтористоводородной кислоты, добавляют 0,2 г спектрально чистого угольного порошка и тщательно перемешивают фторопластовым шпателем. На треножник ставят пустую чашку - приемник. Цилиндрический сосуд закрывают крышкой и помещают на кипящую водяную баню. Крышку сосуда с внешней стороны охлаждают сухим льдом (твердой CO2). Пары кислоты, охлаждаясь на конусообразной стороне крышки, конденсируются и стекают с вершины конуса в чашку. Перегонку ведут со скоростью 15-20 мл/ч. Первую фракцию и кубовой остаток (по 10% от загруженной кислоты) отбрасывают. Для анализа используют среднюю фракцию. Очищенную кислоту хранят во фторопластовом баллончике с хорошо завинчивающейся пробкой.

В описанном приборе кроме фтористоводородной кислоты можно перегонять соляную и азотную кислоты, а также очищать растворы аммиака, этиловый спирт, воду.

Перекристаллизация

Сущность перекристаллизации состоит в том, что очищаемое вещество растворяют в возможно малом объеме горячей воды, раствор отфильтровывают от нерастворимых примесей и фильтрат быстро охлаждают. Вследствие уменьшения растворимости при охлаждении часть вещества выделяется из раствора в виде кристаллов. Растворенные загрязняющие вещества, присутствующие в значительно меньших количествах, чем основное вещество, не выкристаллизовываются, а остаются в маточном растворе. Отделив кристаллы от маточного раствора фильтрованием, получают вещество в довольно чистом состоянии.

Иногда очистить вещество однократной перекристаллизацией не удается, тогда ее повторяют 2-3 раза. Перекристаллизацией нельзя очистить вещество от загрязнений, участвующих в построении кристаллической решетки очищаемого вещества, т.е. образующих с ним так называемые смешанные кристаллы.

Перекристаллизация щавелевой кислоты. Перекристаллизованную щавелевую кислоту состава H2C2O4-2H2O применяют для установки титра растворов перманганата калия KMnO4 или растворов щелочей NaOH или KOH.

Берут в стакан вместимостью 300 мл на лабораторных химических весах 100 г продажной щавелевой кислоты; затем отмеряют мерным цилиндром и наливают в стакан 150 мл горячей дистиллированной воды. Нагревают на газовой горелке (на асбестированной сетке) до полного растворения навески, перемешивая содержимое стакана стеклянной палочкой. На дне может остаться лишь незначительный белый аморфный нерастворимый остаток.

Горячий раствор весь сразу фильтруют через складчатый фильтр, вложенный в воронку с короткой трубкой. В длинной трубке воронки может произойти кристаллизация щавелевой кислоты, и трубка будет забита кристаллами. Во избежание кристаллизации во время фильтрования желательно пользоваться воронкой для горячего фильтрования. Фильтрат собирают в стакан, поставленный в кристаллизатор с холодной водой. После окончания фильтрования фильтрат хорошо перемешивают в течение 10 мин стеклянной палочкой.

Выделившиеся кристаллы отфильтровывают на воронке Бюхнера с отсасыванием. В воронку вкладывают два фильтра, смочив и плотно прижав их ко дну воронки, и включают водоструйный насос. Весь раствор вместе с кристаллами выливают в воронку. Остатки кристаллов очищают стеклянной палочкой со стенок стакана в воронку. Отсасывание ведут до тех пор, пока не прекратится появление капель на кончике трубки воронки, а кристаллы не приобретут снежно-белый цвет. После отсасывания сначала отсоединяют колбу от насоса, а затем закрывают кран водоструйного насоса.

Воронку вынимают из колбы и вытряхивают из нее кристаллы на сложенный вдвое лист фильтровальной бумаги. Стеклянной палочкой распределяют кристаллы ровным слоем, накрывают другим листом сложенным вдвое, и отжимают кристаллы между листами. Если бумага стала мокрой, берут новые листы и снова отжимают кристаллы до тех пор, пока бумага не перестанет увлажняться. Кристаллы «перебирают» стеклянной палочкой, и если они не пристают к ней или полностью отстают от нее при легком встряхивании, то высушивание считают законченным. Кристаллы оставляют на воздухе еще на полчаса, распределив их тонким слоем на листе фильтровальной бумаги, затем пересыпают в банку или бюкс с хорошей пробкой. Выход около 70 г.

Оуэн предложил удобный прибор для перекристаллизации органических веществ для микроанализа (рис. 45). В таком приборе, но только большего размера, можно проводить перекристаллизацию небольших проб веществ для обычного анализа.

Прибор состоит из двух одинаковых кристаллизационных трубок 1 и 5 и центральной части 3. Герметичность соединений создается фланцами 6 и 8, сжатыми пружинным зажимом. Каждую часть изготовляют из стеклянной трубки диаметром 10 мм с припаянными обычными фланцами. Удобно иметь несколько кристаллизационных трубок 1 и 5. Фильтрование проводят через один или два плотных бумажных фильтра 7 диаметром 2 см. Для удаления влаги трубки предварительно хорошо просушивают. Сушку можно проводить продуванием теплого воздуха через отростки 2 или 4, поместив в них кусочки ваты для защиты от попадания атмосферной пыли.

Для отделения нерастворимых примесей в трубке 5 растворяют навеску твердого вещества в соответствующем растворителе, заполняя трубку на 1 см ниже выхода отростка 4. Трубку закрывают пробкой, закрепляют на штативе и подогревают до полного растворения навески. Затем прибор собирают, как показано на рис. 45, вставив между фланцами бумажный фильтр, осторожно переворачивают и фильтруют горячий раствор в трубку-приемник 1. Для ускорения фильтрования можно применять слабое отсасывание через отросток 2 или слабое давление через отросток 4.

Трубку-приемник 1, содержащую чистый фильтрат, используют для кристаллизации вещества путем охлаждения или выпаривания растворителя с отсасыванием. Для кристаллизации центральную часть с трубкой отъединяют и заменяют пробкой (фланец 8). После выделения кристаллов пробку вынимают, на фланцы накладывают бумажный фильтр, прикрепляют центральную часть (трубкой вверх) к другой приемной трубке 5. Затем прибор переворачивают и маточный раствор фильтруют с отсасыванием. Приемник 5 отделяют, фильтрат выливают в сборник, а трубку ополаскивают растворителем. Приемник снова присоединяют к центральной части и прибор переворачивают. Для промывки в трубку с кристаллами через отросток 4 вводят промывную жидкость и содержимое встряхивают. Прибор переворачивают и промывную жидкость отфильтровывают с отсасыванием. Промывку можно повторять много раз.

После промывки основная часть кристаллов оказывается на фильтре. Центральную часть прибора отделяют. Кристаллы вместе с фильтром стряхивают постукиванием на чистый лист фильтровальной бумаги. Кристаллы счищают на фильтр и с фильтром сушат в сушильном шкафу. Гигроскопические вещества высушивают прямо в трубке, при этом центральную часть снимают и заменяют стеклянной крышкой. Отсасывание проводят через трубку 4.

Экстракция

Слово экстракция означает извлечение. Очистка жидкостей экстракцией основана на различной растворимости отдельных веществ в разных растворителях. Очистку экстракцией проводят, взбалтывая раствор с несмешивающейся с водой жидкостью, в которой загрязнения растворяются лучше, чем в воде. Экстракцию проводят в делительной воронке (рис. 46).

Раствор, подвергающийся очистке, наливают не более чем до половины делительной воронки. Туда же добавляют подходящий растворитель, не смешивающийся с водой, в количестве не более половины взятого для очистки раствора. Закрыв делительную воронку и придерживая одной рукой пробку, а другой кран, плавным движением перевертывают воронку несколько раз вверх и вниз. Нельзя энергично взбалтывать содержимое воронки, так как при этом может образоваться устойчивая эмульсия, на расслаивание которой потребуется много времени. Перемешивание нужно вести 15-20 мин так, чтобы слои жидкости как бы скользили один по другому. Время от времени взбалтывание прекращают и в перевернутом состоянии (когда кран приподнят кверху) осторожно приоткрывают кран для выравнивания давления газов.

По окончании экстрагирования делительной воронке дают постоять в штативе до тех пор, пока не произойдет полное расслоение жидкостей и между ними не установится резкая граница. После этого открывают пробку, а затем, осторожно открывая кран, сливают нижний слой жидкости в стакан. Для уменьшения скорости вытекания жидкости под конец истечения кран слегка прикрывают. Затем кран закрывают и выливают оставшуюся жидкость через горло воронки в другой стакан. Для полноты очистки экстракцию повторяют несколько раз.

Очистка дитизона. Для фотометрического определения цинка готовят 0,02%-ный раствор очищенного дитизона в хлороформе. Для этого 0,2 г дитизона растворяют в 20 мл хлороформа и проводят очистку раствора экстракцией. Раствор помещают в делительную воронку вместимостью 600 мл, добавляют 200 мл 2%-ного (по объему) раствора аммиака и хорошо взбалтывают. Дитизон при этом переходит в аммиачный слой. Слой хлороформа отделяют и выбрасывают. Добавляют еще 5 мл хлороформа, снова перемешивают и сливают слой хлороформа. Промывку порциями по 5 мл хлороформа продолжают до тех пор, пока слой хлороформа не перестанет окрашиваться в красный цвет.

В воронку к аммиачному раствору дитизона приливают 50 мл хлороформа, 4 мл соляной кислоты (1:1) и по каплям избыток ее до кислой реакции, затем хорошо перемешивают. Дитизон переходит в хлороформ; раствор окрашивается в зеленый цвет. Слой хлороформа промывают два раза водой. Раствор дитизона сливают в мерную колбу вместимостью 100 мл, доводят хлороформом до метки и хорошо перемешивают.

Некоторые твердые вещества при нагревании способны активно испаряться до достижения температур их плавления. Обратный переход паров в твердое состояние происходит сразу, минуя жидкую фазу. Такой процесс называется возгонкой или сублимацией и применяется для очистки веществ.

Возгонка, даже однократная, как правило, приводит к получению вполне чистого продукта и нередко заменяет несколько перекристаллизации. Она может быть использована как для окончательной очистки продукта, так и для предварительного отделения летучего соединения от нелетучих примесей. От перекристаллизации возгонка выгодно отличается также более высоким выходом чистого продукта (98-99%).

С другой стороны, возгонка - весьма длительный процесс, поэтому его обычно используют для очистки небольших количеств веществ. Область применения этого метода ограничена также тем, что способность многих твердых соединении сублимироваться столь ничтожна, что не может быть использована для препаративных целей.

Поскольку скорость испарения пропорциональна общей площади поверхности испарения, подвергаемое возгонке вещество необходимо как можно тоньше измельчать. Не следует также допускать плавления вещества при возгонке, поскольку это ведет к падению скорости процесса вследствие резкого уменьшения поверхности вещества.

Применение разрежения, так же как и при перегонке, снижает температуру, при которой вещества начинают возгоняться, поэтому под вакуумом удается сублимировать многие трудполетучие соединения.

При выборе приборов для возгонки следует отдавать предпочтение конструкциям, в которых расстояние между возгоняемым веществом и поверхностью конденсации минимально. С уменьшением этого расстояния возрастает скорость возгонки.


Рис. 81. Приборы (а, б) для возгонки с конденсацией паров на охадаемых поверхностях.



Рис. 82. Простейший прибор для возгонки: 1 - фарфоровая чашка с веществом; 2 - стеклянная воронка; 3- кружок фильтровальной бумаги с отверстиям; 4 - песчаная баня; 5 - вата.

Для сублимации небольших количеств легко возгоняющихся веществ может быть использован про- стсйшпй прибор, состоящий кз фарфоровой чашки, часового стекла и обычной химической воронки (рис. 80). Возгоняемое вещество нагревают на песчаной бане; возгон собирается на холодных стенках воронки, откуда его следует периодически счищать. Чтобы кристаллы возгона не падали обратно в чашку, вещество накрывают кружком фильтровальной бумаги или асбеста, проколов в нем несколько отверстий.


Рис. 82. Прибор для возгонки небольших количеств веществ в вакууме.

Во многих случаях предпочтительнее проводить конденсацию на охлаждаемую поверхность. Из всех предложенных для этой цели приборов наиболее простыми и в то же время обеспечивающими минимальное расстояние до поверхности конденсации являются приспособления, изображенные на рис. 81.

Обычно применяемый прибор для возгонки небольших количеств веществ в вакууме приведен на рис. 82. К его недостаткам относится необходимость периодического отключения вакуума и разборки прибора для соскабливания возгона.

В вакуум-сублиматоре, изображенном на рис. 83, возгон собирается в горизонтально расположенном холодильнике с достаточно широкой внутренней трубкой. Во избежание преждевременной конденсации продукта колбу с возгоняемым веществом по самое горло погружают в нагретую до нужной температуры жидкостную баню. Небольшой ток воздуха или инертного газа, подаваемый в" колбу через капилляр, способствует эффективному отводу паров от поверхности испарения, что резко повышает производительность прибора.

Для предотвращения уноса мельчайших частиц вещества с током газа в отводное горло колбы целесообразно впаять пористую стеклянную перегородку, однако при небольшом расходе газа эта мера не обязательна.



В зависимости от свойств очищаемого вещества и его количества можно изменять конструкцию отдельных частей прибора, не меняя принципа его действия. Так, различными могут быть форма колбы и способ ее обогрева. В качестве конденсатора для сублимации больших количеств вещества очень удобна охлаждаемая снаружи двухгорлая колба.



Загрузка...